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ABSTRACT 

   

Solar energy is one of the most practical sources of free and convenient 

renewable energy in the tropics.  Capturing this energy and converting it 

into electricity by a solar or a photovoltaic (PV) cell became commonly 

pursued in the field of physics, engineering, and renewable energy advocates 

for decades and in the recent years.  The first and second generation solar 

cells were made in bulk design with the best efficiency ranging from 30 to 

40% conversion.  Related studies have shown, almost 70% of the losses 

accounted for thermalization, extraction inefficiencies and non-absorption of 

solar energy. These known losses can be drawn as a result of properties 

intrinsic to the material used and geometric design of solar cell. 

Understanding the wave nature of the solar spectrum and treating it as an 

electromagnetic wave, it is most viable that the said losses can be recovered 

using a geometric approach by capturing solar energy at its corresponding 

wavelengths.  It was determined that by employing a fractal Sierpinski’s 

carpet as a PV cell design could theoretically improve the maximum 

efficiency 3.7 times than the conventional Euclidean PV cell. The effects 

were supported by related studies in Photonics and Fractal Antennas.  

Equations for the evaluation of the actual efficiency performance and 

maximum power point had also been established. 
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Introduction 
 

Solar energy is the most convenient source of renewable energy today 

and the coming century. The adverse effect of burning conventional 

hydrocarbons are eminent through global warming and health effects in 

many forms, including factors aggravating cancer and other illnesses.  The 

enormous volume of fossil fuel was extracted from the ground through the 

years and with its finite source. Its supply will diminish and by the time it 

happens, it will become one of the worst crises in the history of man on a 

worldwide scale. 
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Remarkably, the sun shines twelve hours a day in the tropics, 100% free 

and a convenient source.  It makes an average 1kW per sq. m of energy 

available at the surface of the Earth.  Eventually, almost every dynamics in 

nature of weather to primary productivity, nutrient, and other 

biogeochemical cycles depends on solar irradiance. 

 

It was cited from the Basic Energy Sciences Workshop on Solar Energy 

Utilization in 2005 that the world’s demand for energy would double by the 

year 2050 and triple by the end of the century.  Also mentioned in the same 

report that the world’s current consumption of energy in a year would only 

be less equal to an hour solar irradiance and yet in 2001, solar energy shares 

only 0.1% from the rest of other energy resources in which fossil fuel still 

took the most portion.  

 

There are several divisions of solar energy conversion and technology 

initiatives to mention:  one is the solar fuel, two is solar thermal and three, is 

the solar electricity which is the most convenient and practical out of the 

three. 

 

The brief history of the developments in research on solar electricity 

conversion as shown in Fig. 2 by a (PV) cell started somewhere late of 1975 

to 1980 with efficiencies ranging from 2% to 24% (NREL, 2015).  Several 

technologies were already on research for improvement at that time.   PV cell 

technologies like Thin Film, Single junction GaAs, and Crystalline Si Cells 

pioneered the advances of which the single crystal single junction GaAS had 

the best conversion efficiency from the rest of that era. 

 

Recently, according to National Research in Energy Laboratory 

(NREL), a four junction concentrator from Fraunhofer ISE/Soitec, attained 

the top notch efficiency so far at 46%.  

 

Several issues and difficulties of solar energy conversion are left 

unsolved and unperfected on PV cell and these areas are the directions of 

research for several years now. 

 

One of the major issues or limitation of PV cell which is material 

dependent is band gap. The band gap is the minimum threshold energy that a 

solar spectrum needs to overcome before conduction and for energy 

conversion to happen.  Fig. 1 shows different semi-conducting materials with 

the corresponding amount of threshold energy.  Band gap eventually, is one 

of the factors that restrict the conversion efficiency as it consumes some 

portions of the solar energy.  
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Another issue that hinders conversion efficiency is material bandwidth 

response.  The response of a semi-conductor is limited only to certain 

portions of the wide bandwidth of the solar spectrum.  For example, in Fig. 

1, Ge is only capable responding near-infrared bandwidth approximately 

from 900 to 1800 nanometer wavelengths, InGaAs in the mid portion and 

InGaP in the region extending to ultraviolet wavelengths.  Thus, construction 

of PV cell of this type is multi-junction and multi-material based.  Producing 

this type of PV cell that captures the wide solar band gap is very expensive.  

Nathan Lewis, Chairperson of Basic Research Needs for Solar Utilization at 

US Department of Energy (DOE) quoted that 1 sq. cm of this kind of cell 

would cost about $40,000, which make this impractical to market and 

produce in volume. 

 

The subsequent effect of the two issues mentioned above resulted in 

conversion losses such as thermalization of material and non-absorption of 

solar energy (Semonin, 2012). 

 

In connection to these PV cell limitations, the research is directed 

towards the improvement of the solar cell by geometric architecture 

manipulation using the Fractal Sierpinski carpet.  This is also done by 

establishing equations essential for its actual evaluation. 

 

 

 

 

 

Fig.1 Band gaps and Bandwidth Response 

(www.laserfocusworld.com) 
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Fig.2 Solar Cell Research history                                                                        

 (courtesy of  http://www.nrel.gov/ncpv/images/efficiency_chart.jpg) 
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Basic Concept and Framework 

 

Solar energy travels to the earth at a speed of 299,792,458 

meters/second.  The visible light spectrum has a bandwidth of 430 to 790 

THz or 390 to 700 nm wavelengths (Starr 2005).   At high noon with a 

cloudless day, the surface of the Earth could receive 1,000 W/m
2
 of solar 

energy (US DOE 2003). 

 

Definition 1. The solar cell efficiency ratio (η) is defined as: 

  

           (1) 

   

 

where Pm = cell power output (watts) at its maximum power point,  

E = Solar Irradiation  

(W/m
2
) and A = surface area of the exposed solar cell (m

2
). 

 

The maximum power point Pm, however, can be expressed as the 

product of the fill factor (FF), the maximum voltage generated at open circuit 

(Voc) and the maximum current at short circuit (Isc) (Etgar 2013). 

 

   (2) 

 

This is where short circuit current (Isc) is equal to the current generated 

by the solar cell directed from n to p side which is in the opposite direction to 

the generated current from irradiation.  This is given in equation 3 (Mahajan 

1999). 

 

  (3) 

 

The part qgopL of the above equation is expressed in total charge 

(Coulomb) per area per time and intrinsic on material property and design. 

Conversely, short circuit current (Isc) is directly dependent and proportional 

to the area (A) of the junction exposed to irradiation, diffusion length (L) and 

generation rate at open circuit (gop). 

 

The open circuit voltage (Voc) alternatively, is expressed in equation 4 

below (Mahajan 1999). 

 

(4) 
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The Fill Factor (FF) on the other hand, is the ratio of the maximum 

power point (Pm) over the product of the short circuit current (Isc) and the 

maximum voltage (Voc) at open circuit.  In equation 5, this is expressed as a 

percentage of the actual power generated by the power available at open and 

short circuits (Etgar 2013) 

 

  (5) 

 

 

Conventional solar cell configurations use the usual Euclidean 

geometry. For instance, in traditional photovoltaic cells, a slab (or wafer) of 

pure silicon is used to make PV cells. The top of the slab is very thinly 

diffused with an “n” dopant such as phosphorous. On the base of the slab, a 

small amount of “p” dopant, typically boron is diffused.  Dopants are similar 

in atomic structure to the primary material. The phosphorous has one more 

electron in its outer layer than silicon, and the boron has one less. The 

phosphorous gives the wafer of silicon an excess of free electrons, so it has a 

negative character. The n-type silicon is not changed since it has an equal 

number of electrons and protons but some of the electrons are not held 

tightly to the atoms. They are free to move to different locations within the 

layer. The boron gives the base of the silicon a positive character. When the 

n and p-type silicon meet, free electrons from the n-type flow into the p- type 

for a spit second, then form a barrier to prevent some electrons moving 

between the two sides. This point of contact is called the p-n junction. When 

the PV cell is placed under the sun, photons of light strike the electrons in the 

p-n junction and energize them knocking them free from their atoms. These 

electrons are attracted to the positive charge in the   n-type silicon and 

repelled by the negative charge in the p-type. Most photon-electron 

collisions occur in the silicon base. 

 

The usual Euclidean geometry used in the construction of solar panel or 

PV cells is not necessarily the optimal geometry to be employed to maximize 

efficiency. For the same energy output Pm, it is possible to configure the 

solar collectors so that the surface area exposed is smaller. To do this, fractal 

geometry (Mandelbrot, 1982) provides a convenient platform for this 

purpose. 

 

Fractals are geometric figures characterized by self-similarity at various 

scales. The repetition of patterns at all scales gives fractals the appearance of 

chaos. The fractal dimension (λ) is an indication of how much space is filled 

by the geometric figure. Thus, for fractals drawn in flat two-dimensional 

m

oc sc

P
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
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surfaces, the fractal dimension cannot exceed two, but will be greater than 0 

(point), i.e. 0< λ≤2.  

 

Definition 2. The box-counting fractal dimension (λ) is given by: 

 

                                                   (6)  

 

where m = number of copies at the first iteration, r = scale. 

 

The simplest fractal that can be constructed from a unit interval 

 I = [0, 1] is the Cantor set or fractal dust. Royden (1980) provides the 

iterative process of constructing C as follows: Divide the unit interval into 

three (3) equal parts and remove the middle third. From the two (2) 

fragments, repeat the process ad infinitum. The fractal dimension of the 

Canter set is: 

 

  

  

 

Let C be the Cantor set and µ(.) be the usual Lebesgue measure on I. 

Then µ(I) = 1 while µ© = 0. The Cantor set C, however, has the same 

number of points as I and is also uncountable (Royden, 1980). This 

remarkable fact is the basis for the modern application of fractals in 

technology. 

 

For regular Euclidean shapes, the ratio of the perimeter P to the square 

root of area A is constant k regardless of the size of the shape: 

                   (7) 

    

 

 

For a square, k = 4; for a circle     For areas bounded by fractal 

curves, where the length of the perimeter diverges as the subdivisions and 

become smaller and smaller, the relationship is: 

 

 

      

Where P and A are the measured perimeter and area using scale λ, 

respectively (Addison, 1997).  
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Results and Discussion 

 

A single unit of solar collector in the shape of a square is fractalized into 

a Sierpinski’s carpet as shown in the figure below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Sierpinski carpet is a plane fractal first described by Waclaw 

Sierpinski in 1916. The construction of the Sierpinski carpet begins with a 

square. The square is cut into nine (9) congruent subsquares in a 3x3 grid 

and the central sub-square is removed. The same procedure is then applied 

recursively to the remaining 8 sub-square and infinitum. 

 

Theorem 1. The area of the Sierpinski carpet tends to zero with respect 

to the standard Lebesgue measure. 

 

Proof: Let A; be the area of the carpet at iteration i. Then,   

                   (9) 

 

 hence,  

 

   

                                                                      as i   

 

Theorem 2. The fractal dimension of the Sierpinski carpet is  

λ = 1.8928. 

 

Proof: Since m=8 and r=3, then 

( 1)

8

9
i iA A

 
  
 

λ = log 8__ 

log 3 
 

1.8928 . 

Fig.3 Sierpinski Solar Collector (courtesy of 

http://paulbourke.net/fractals/carpet/hadamard.gif) 
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Theorem 3. The area of the Sierpinski at a finite iteration i=N is less 

than the unit square. 

 

Proof: From Addison (1997),  

      

  

 

   where  k = 4 for a square. 

 

  

  

Hence,                             Since λ=1.8928 . 

 

  

By utilizing fractal architecture in the design of solar collectors, it is 

possible to increase efficiency by more than 100% (see Definition 1) by 

decreasing the term Ac in the denominator. However, the numerator Pm 

which is the power output might also be affected by the decrease area. 

  

Depending on the design of the PV, the modules can produce electricity 

from a range of frequencies of light (ultraviolet, infrared, and low light) but 

the conventional geometric design cannot cover the entire solar range. 

Hence, much of the incident sunlight energy is wasted by solar modules. 

They can give far higher efficiencies if illuminated with monochromatic 

light. A design concept is to split the light into different wavelength ranges 

and directs beams onto different cells turned to those ranges. This increases 

efficiency by 50%. Developments in fractal antennas demonstrate that this 

could be possible in solar energy technology (Hodlmayr, 2007). 

 

With a different geometry, namely fractal geometry, the new, highly 

convoluted irregular shapes of fractals; the solar collectors allow graphical 

scaling to a degree where the multi-frequency operation is possible with very 

small sizes and multiple operating bands (Hodlmayr, 2007). The better the 

curve fills up a surface, the better for the multi-frequency solar collector. 

This is the principle of lacunarity. 

 

Theorem 4. The principle of lacunarity operates in fractal Sierpinski 

solar collectors. 
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Proof: Since the space-filling property of the Sierpinski carpet is high 

with λ = 1.8928, it follows that it will have higher multi-frequency solar 

energy collection property. Hence, the principle of lacunarity applies. 

Another consequence of the fractal shape is the existence of a multitude 

of “places” along the silicon base where charges are strongly accelerated, 

hence, producing electricity. 

 

From Theorem 4, we deduce the Pm under the Sierpinski architecture. 

 

Main Result. The efficiency of a solar collector designed under the usual 

Euclidean Geometry is less than the efficiency of a solar collector using the 

fractal Sierpinski architecture. 

 

Proof: Combine Theorem 3 and Theorem 4.  

 

Note that ASierpinski = 0.27 so that the efficiency is theoretically raised by 

about 370%.  

 

The computed theoretical efficiency means the maximum limit that a 

fractal Sierpinski carpet could approach, 3.7 times than the Euclidean PV 

cell. 

 

The value does not represent reality as the computation is based on the 

ideal condition that material used undergoes perfect absorption and no 

entropy production, a mathematical representation influenced by fractal 

arrangement.  Fractals extend towards infinity, thus it is expected to get 

values out of bound. 

 

The significance of the computed efficiency is that it multiplies 

Euclidean PV maximum limit of efficiency of 100% to 3.7 times to some 

extent and this fact alone is worth investigating and an indicator of 

improvement. 

 

 

Projected Power Output of Conventional Solar Panel 

 

On the other hand, looking at the maximum power output of the 

Euclidean designed PV cell by combining equations 3 and 4 previously 

discussed, the expression below for maximum power point can be derived as 
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Equation 10 is obtained by the product of the Fill Factor FF , open 

circuit voltage ocV  and short circuit current scI  of the PV cell exposed to 

irradiation as given by equations 3 and 4. 

 

The mP is directly proportional to the area A  of the junction 

perpendicular to the light rays, 
opg  generation rates of holes and electrons of 

the material at open circuit, L  length of the diffusion region of the p-side 

and the n-side, the absolute operating temperature T and lifetime of electrons 

and holes  in the PV cell.  The constant kB is the Boltzman constant and the 

term nP  and pN are the concentration of holes and electrons in the p and n 

type materials. 

 

There is a significant amount of losses in a typical conventional PV 

Cell. Semonin (2012) cited in Fig. 4 that these losses accounted about 57% 

of the total available solar spectrum, rejected as thermalization, extraction 

inefficiencies and unabsorbed solar rays for a single-junction bulk crystalline 

semi-conductor.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Accounting of energy conversion of a bulk crystalline PV Cell 

(http://spie.org/Images/Graphics/Newsroom/Imported-

2012/004146/004146_10_fig1.jpg) 
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Projected Power Output of Theoretical (Sierpinski Carpet) Fractal 

Solar Panel 

 

The approach of fractal PV cell is to unite the solar spectrum 

bandwidths with the sizes or areas of PV junctions capturing all the 

wavelengths.  This is simply treating light as an electromagnetic wave and 

handling it similarly as radiation and its absorption similar to an antenna.  

Studies of Baharwadj & Novotny (2009) cited in their work on photonics and 

optical antennas, that absorption, radiation, and control of the 

electromagnetic light spectrum is more efficient on antenna sizes with their 

corresponding wavelengths.  The same fundamental concepts of the power 

receiving antenna as mentioned by Freeman (2011) in his lecture on the topic 

Signals and Systems. 

 

The maximum power point of a fractal solar cell could be expressed as 

the sum of its individual aggregates from i to n  generations.  Simple 

manipulation of equation 8 to calculate for the maximum power point mfP

for a Sierpinski Carpet Solar Cell is shown below.  

      

     

  (11) 

 

 

     

  (12) 

 

Where:        

N  – base number of fractal areas (N=8 for Siepinski Carpet) 

iA =
2id  , Area size of aggregate at corresponding i generation (d = 

1/3 & 1   for Sierpinski Carpet)  

fA - Total area of aggregated solar junction from 1i   to n generation 

miP – Maximum Power Point at corresponding aggregate area of i
generation of the junction 

i – Solar Cell Efficiency of junction area at i generation 

E – Solar Irradiance A.M 1.5 G (1,000 W/m
2
)  

 

Equation 11 means that the specific solar efficiency of the aggregated 

solar cell at i  is at its maximum when the ratio of the maximum power point 

of generation i  and the sum of all the areas of the aggregate at that 

generation would approach the value of unity in the solar Irradiation E . 
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As the dimension d of the squared region approaches 390nm-the least 

wavelength of the visible spectrum in equation 12, it is expected that there 

should be an increased in photon energy absorption in photovoltaic material.  

Conversely, it is anticipated that the maximum power point per junction area 

at generation i is also at its optimum in these nanometer dimensions.  This is 

because of the higher opg of the PV cell and longer  lifetimes of hole-

electron changes depicted in equation 10 and incoherence to the result and 

observation of Hägglund (2008).   

 

Hägglund (2008) illustrated that there are three subsequent effects in 

Fig. 4 on a light absorber in the nanometer dimensions that would explain the 

increase of absorption or conversion efficiency.   

 

 

 

  

 

 

 

 

 

 

 

 

 

These are the phenomena that could occur at nanometer scale 

dimensions as illustrated in the Fig. 5 (a) far-field scattering of photons 

which effect longer lifetimes of hole-electron charges, (b) near-field 

scattering would increase hole-electron generation rates opg and lastly, (c) 

direct injection which is a direct conversion of high-intensity photons to 

electron-hole energy.  

 

The mfP of a fractal solar panel could be expressed as the total sum of 

the maximum power points of the aggregates at i =1 to n generations in 

equation 13.  Likewise, its solar efficiency f is the total efficiencies of the 

aggregates from 1i  to n generation expressed in equation 14. 

    

 

(13) 

 1

n

mf mi

i

P P




Figure 5. Different types of antenna effects in photovoltaics. (a) 

Far-field scattering, leading to a prolonged optical path.(b) Near-

field scattering causing locally increased absorption, and (c) 

direct injection of photoexcited carriers into the semiconductor 

(www.osapublishing.org). 
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(14) 

 

 

However, we note that the total solar efficiency f is a straight forward 

independent efficiency of aggregate areas from 1i   to n generations.  

Basically, this does not include yet, the influence of the collective effects of 

the fractal arrangement on the PV cell.  With this, a fractal coefficient that 

denotes the influence of fractal arrangement on solar efficiency is introduced 

and defined as f .  Its possible values could range +/- proportions of unity. 

 

Finally, the overall solar efficiency of a fractal solar panel F could be 

expressed in equation 15 and 16 below relating to mfP , the total area of PV 

cell junction fA  and E . 

 

  

(15) 

    

(16) 

 

Conclusion 

 

Theoretical results appear to support fractal architecture in the design of 

a solar panel. The fractal architecture maximizes the absorption of solar 

spectra not otherwise captured in a Euclidean architecture of the solar panel. 

These theoretical results, however, are extremely challenging to verify in a 

laboratory setting as they require measurements at the nano-scale. 

  

Fractal geometries could be the solution to eliminate multi-junction and 

multi-material PV cell, thus lowering cost of production and complexities.  

Also, higher efficiencies could be achieved further as a material selection of 

the lowest band gap could be made possible by just employing fractal 

arrangement at corresponding solar spectrum wavelengths.  

 

 

 

 

 

mf F fP EA

1

n

i

i
f

n



 


(1 )F f f   

14 



Vol. 3     No.1    December 2015    ISSN: 2362 - 9096 

 

15 

 

 

References 

 

Addison, S. (1997). Fractals and Chaos. Napier University. Institute of 

Physics Publishing Bristol ISBN-13: 978-0750304009 ISBN-10: 

0750304006  

 

Allouche, J., and J. Shallit (2003). Automatic Sequences: Theory, 

Applications, Generalizations. Cambridge University Press. pp. 405–

406. ISBN 978-0-521-82332-6. Zbl 1086.11015. 

 

Basic Research Needs for Solar Energy Utilization. (2005). Report on Basic 

Energy Sciences Workshop on Solar Energy Utilization.  US 

Department of Energy. 

http://www.sc.doe.gov/bes/reports/files/SEU_rpt.pdf. 

   

Bharadwaj, P., B. Deutsch and L. Novotny (2009) “Optical Antennas”, 

Institute of Optics and Department of Physics and Astronomy, 

University of Rochester, Rochester, New York 

 

Freeman, D. (2011) Signals and Systems “Lecture on Modulation part 1” 

MIT Open Course Ware, Massachusetts Institute of Technology  

 

Hägglund C. (2008). “Nanoparticle plasmon influence on charge carrier 

generation on solar cells”, PhD Thesis, Chalmers University of 

Technology, Gothenburg Sweden 

 

Hodlmayr, W. (2004). Fractal Antennas.  

 

Lioz, E. (2013). Semiconductor Nanocrystals as Light Harvesters in Solar 

Cells, Retrieved from w11111111ww.mdpi.com/journal/materials, ISSN 

1996-1994  

 

National Center for Photovoltaics (2015). NREL National Research on 

Energy Laboratory.  US Department of Energy 

 

Mandelbrot, B. (1982). The Fractal Geometry of Nature. W.H. Freeman and 

Company. Retrieved from 

 http://ordinatous.com/pdf/The_Fractal_Geometry_of_Nature.pdf 

 

Royden, H.L.(1988). Real Analysis, Macmillan Publishing Company 

 

15 

http://en.wikipedia.org/wiki/Cambridge_University_Press
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-521-82332-6
http://en.wikipedia.org/wiki/Zentralblatt_MATH
http://zbmath.org/?format=complete&q=an:1086.11015
http://www.mdpi.com/journal/materials


NMSCST Research Journal 

 

16 
 

Rummler, H. (1993). Squaring the circle with holes, The American 

Mathematical Monthly 100 (9): 858–

860, doi:10.2307/2324662, MR 1247533 

 

Sagoff, J. (2014). “New Solar Cells Technology captures High-energy 

Photons Efficiently” News article. Phys Org.  

 http://phys.org/news/2014-01-solar-cell-technology-captures-high-

energy.html 

 

Semmes, S. (2001). Some Novel Types of Fractal Geometry. Oxford 

Mathematical Monographs. Oxford University Press. p. 31. ISBN 0-19-

850806-9.Zbl 0970.28001. 

 

Semonin, O. (2012). Multiple Exciton Generator in a Quantum Dot Solar 

Cell, National Renewable Energy Laboratory 

 

Sierpiński, W. (1916). "Sur une courbe cantorienne qui contient une image 

biunivoque et continue de toute courbe donnée". C.r. hebd. Seanc. Acad. 

Sci.,Paris (in French) 162: 629–632. ISSN 0001-4036. JFM 46.0295.02. 

 

Starr, C. (2005). Biology: Concepts and Applications. Thomson 

Brooks/Cole. ISBN 0-534-46226-X. 

 

Weisstein, E. W., "Wallis Sieve", MathWorld. 

 

Whyburn, G. (1958). "Topological characterization of the Sierpinski 

curve". Fund. Math. 45: 320–324. 
 

16 

http://en.wikipedia.org/wiki/The_American_Mathematical_Monthly
http://en.wikipedia.org/wiki/The_American_Mathematical_Monthly
http://en.wikipedia.org/wiki/Digital_object_identifier
http://dx.doi.org/10.2307%2F2324662
http://en.wikipedia.org/wiki/Mathematical_Reviews
http://www.ams.org/mathscinet-getitem?mr=1247533
http://en.wikipedia.org/wiki/Stephen_Semmes
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/0-19-850806-9
http://en.wikipedia.org/wiki/Special:BookSources/0-19-850806-9
http://en.wikipedia.org/wiki/Zentralblatt_MATH
http://zbmath.org/?format=complete&q=an:0970.28001
http://en.wikipedia.org/wiki/International_Standard_Serial_Number
http://www.worldcat.org/issn/0001-4036
http://en.wikipedia.org/wiki/Jahrbuch_%C3%BCber_die_Fortschritte_der_Mathematik
http://zbmath.org/?format=complete&q=an:46.0295.02
http://books.google.com/?id=RtSpGV_Pl_0C&pg=PA94
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-534-46226-X
http://en.wikipedia.org/wiki/Eric_W._Weisstein
http://mathworld.wolfram.com/WallisSieve.html
http://en.wikipedia.org/wiki/MathWorld
http://en.wikipedia.org/wiki/Gordon_Whyburn

