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The paper surveys some stochastic models used to describe the behaviour of primes
and other prime metrics. The Prime Number Theorem is proved by modelling the primes as
a Poisson process. Likewise, it is demonstrated that the Riemann hypothesis is equivalent to
thelhypothesis that the distribution of the prime gaps is exponential with rate parameter
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Assuming that the prime gaps are exponentially distributed, the paper also proves the

Keywords: primes, prime gaps, Erlang distribution, Poisson process, stochastic approximations

1.0 Introduction

The gaps between consecutive
primes are observed to obey an exponential
distribution (Yamasaki, 1995) and since the
primes can be expressed as the sum of the
previous prime and these consecutive prime
gaps, they too are often thought to behave
in a pseudo-random fashion. In stochas-
tic number theory, primes are considered
pseudo-random quantities that obey certain
probability models. Erdos (1932), Cramer
(1919), Selberg (1943) and others have all
viewed primes and prime gaps as essen-
tially random and formulated useful results
using this assumption. This paper examines
some consequences and results that follow
logically from stochastic assumptions about
prime numbers. Later, the relationship be-
tween the Riemann hypothesis (1859) and
the assumption of randomness in the dis-
tribution of prime gaps is also explored.

2.0 Some probability Models for Primes
and Prime Metrics

2.1 The Beta (a,B) Distribution.
Let n(x) be the number of primes less or
equal tox and let 1<x <x, n=1,2,3.....N.
The quantity Y, =Z%= {5 observed to
lie on the interval [0,1], and, hence, may be
modelled by the Beta (a.f) Distribution:

I - &
fOm) = fored YA =3l L@ B >0,0<y, <1 ()

Various choices of o and  yields different
shapes of the beta distribution. If a<f, the
density is more concentrated on the left
(skewed to the right); if o>, the reverse is
true. If =P, we have a symmetric distribu-
tion. The uniform distribution U(0,1)is ob-
tained if a = = 1.

The ratio of successive primes
zm=5" isalso a quantity that lies on the in-
terval [0,1] and may, thus, be modelled us-
ing a beta distribution Beta (a.,3). The mean
and variance of the beta distribution are:

a

I«l=m

(2)
A —
(a+p)? (a+p+1)

Journal of Higher Education Research Disciplines 33



ON STOCHASTIC APPROXIMATIONS TO THE DISTRIBUTION OF PRIMES AND PRIME METRICS

Moreover, it is known that the mean of the
logarithm of a beta random variable is equal
to the logarithm of the geometric mean:

dln F(a) dInT(a+p)

E(lny) =In(G)) = - (3)

2.2 The Exponential Distribution
and Erlang Distribution

Let d,,=P;+,-Py be the gaps be-
tween successive primes Pz, P2,...,P,, P4 ).
Empirical observations tend to confirm that
these obey an exponential distribution. The
random variable X has an exponential dis-
tribution if:

f(x) = pe F*
The mean and variance of the exponential
distribution are:
=T
=5

,Xx>0,>0 (4)

(&)
2=, 2
BZ
The maximum-likelihood estimates of p
and o are:

g

(6)

where X = X1, x;
X,.Xa,. . ..Xy, from ().

for a random sample

One can write P,,=d,, P, ,=d,*P,,...
,P,,=d,+d,+...+d,, so that the nth prime is
expressed as the sum of consecutive prime
gaps. The probability distribution of P, is,
thus, given by:

fp, (1) =

,Bntn_le"Bt

RS YR n= 1,2, .

which is the Erlang distribution. The mean
and variance of the Erlang distribution are:

u=a/p=n/p
(7)
o’=a/p=n/p’
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A related distribution that arises out of these
considerations is the Poisson distribution.
In the language of Stochastic Processes,
the primes {P,, | n > 0} constitute a renewal
process, 0 <P, <P, <..<P, <..; the prime
gaps {d, | n>0} are the exponential inter-
arrival times. The number of prime arrivals
up to and including t, denoted by N(?), has
the Poisson distribution:

e~ Bt
PN =) =228k =0,1,2,.. (8

The mean and variance of this Poisson dis-
tribution are:

p=pt

o?=pt

2.3 Fractal or Power — Law Distribution.

Power — law distributions are distributions
of the Mandelbrot (1967) restriction:

log f(x)
A= 10
00’ 1o
We call the distribution f(x) below a fractal
distribution with fractal dimension A:

Feo =516

An important relation exists between the
fractal distribution (11) and the exponential
distribution (4).

©)

x=26,0>0

A>1x20>0 (1)

Result. A random variable x has a
fractal distribution if  y=1log(5)

has an exponential distribution with
rate parameter f = A - I.

Since the prime gaps {d,} has an expo-
nential distribution (f), it follows that
x=6 exp (dy) has a fractal distribution with
fractal dimension A=1+p.

The maximum likelihood estimator
of A given a random sample from f{x) is giv-
en by:
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A=14+—-umr— 12
Fomeatn

It follows from (12) that
B - (13)

T SE,00(G)/m
is a maximum-likelihood estimator of f3
based from the derived fractal distribution.

3.0 Distribution of Primes and Other
Prime Metrics

For large n, we observe that:
%27{;1 log (%) = %ZLI log (zz—k)
= Yk=1log(k) < %.n logn =logn

Tn
where x; is the i prime gap. Hence,
X~ log(n)

5 1
"~ log(n) U

Relation (14) states that the average prime
gap or spacing between primes is roughly
log(n) for large n. The rate parameter f is
asymptotically =7 . We now state a sto-
chastic version o1 tne Prime Number The-
orem.

asn — oo,

Stochastic Prime Number Theo-
rem. SPNT Let the prime gaps d;;=P,.,-Pj,
be exponentially distributed with rate pa-
rameter f. Then, the number of primes less
or equal ton is

TL'(TL)N$ (15)

Proof. Since the prime gaps {d,, } are ex-
ponential, it follows that {N(?):t>0} has a
Poisson distribution with mean fr.

Hence,

n(n) = E(N(n)) = fn ~
from (14).

n
log(n)

(16)

Note that we have established the
Prime Number Theorem (PNT) in (14)
without appealing to the zeroes of the Rie-

mann Zeta function. We can also derive a

version of the Strong Law of Large Num-

bers (SLLN) for the primes. First, note that
Var(m)~% var(N(n))

n p—

I S S
n log(n) - log(n)

17

It follows that:

Strong Law of Large Numbers for
Primes. The average number of primes less
or equal to n approaches almost
surely:

N(n) -

log (n)
n
log (n)

as. asn - o, (18)

Proof. From Chebychev’s inequality:
P ([ve -

n
log (n)

var(N(n))
22

|<£)21—

-1 asn — oo

£2log (n)

Since 10gn(n) —00 as n—o0, we cannot ap-
peal to the Central Limit Theorem to es-
tablish asymptotic normality. In fact,
what can be deduced from these prob-
abilistic arguments is that there are in-
deed infinitely many primes (Euclid, 300
BC). The best statement that can be made
along this line is the Erdos-kac Theorem:

Theorem (Erdos-kac). Let y(n) de-
notethe number of primesthatdividen. Then:

P(n)—/nloglogn
Jelogrog 1 (O1)
How large must n be so that [z(v) - log"(n)
we can use (18) to determine n. With prob-
ability (1-a), the error is less than £ when:

(19)

asn — oo,

|<s?

1
&2 (1-a)

log(n) =

n=exp(e? (1—a))™?!
For instance, ife = .01 (1%) and o =.01 (I-a
= 99%), then
n > exp((.01)2(.99))~* = exp (10)° (20)
From the Erlang distribution of the primes
{P, }, we observe that:
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n

E(Pn)"'% =——=nlogn
Tog(m)
21
E(P,)~nlogn
And also that:
Var (B,)~nlog?(n) (22)

From (21), an estimate of the n™ prime is
provided by n log (n).

4.0 Bounds on Primes and Prime Gaps

The Stochastic Prime Number The-
orem (SPNT) tells us that the estimate of
the number of primes less or equal to n,
m(m)~——. is a statistical average statement
whereas the Prime Number Theorem (PNT)
alludes to no such averaging process. The
PNT is a deterministic statement, proved
mathematically by using the zeta func-
tion. Thus, the requirement that the real
part of the Riemann zeta function, have no
zeroes on the line Re({(s))=1 needed by
Hadamard’s proof (1896) is replaced by
the assumption that the prime gaps be ex-
ponentially distributed (f). In particular,
the Riemann hypothesis: “The zeroes of
the Riemann zeta function are located on
the strip {olo=;+itcer}" is equivalent to the
hypothesis that: ““The prime gaps are expo-
nentially distributed (f)”. Evidence, so far,
shows that the hypothesis of an exponential
(B) prime gap distribution is consistent with
available data on primes up to 1025 (Zhang,
2013) and so does the Riemann hypothesis.
Both hypothesis are difficult (if not, impos-
sible) to prove. The former requires knowl-
edge of all primes while the latter requires
mathematics yet to be invented. Much as
progress in Biological Sciences continues
without ever proving Darwin’s Theory of
Evolution, developments in Analytic Num-
ber Theory will continue while implicitly
assuming the Riemann hypothesis.
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Meanwhile, there are other conjec-
tures that are equally deserving of serious
consideration. These conjectures are of two
types: (a) those that relate to small prime
gaps e.g. the twin-prime conjecture, and (b)
those that the relate to large prime gaps e.g.
maximal prime gap conjectures. Equation
(23) belongs to the first type while Equation
(22) belongs to the second type:

Jim sup 22 = 22)
rlll_I)I;IOL flog(n) 0 (23)

We provide some stochastic answer to these
conjectures:

Theorem 4.1 If the prime gaps obey
an exponential distribution (), then:

. dn
Al—l;rolo sup log2(n) =1

Proof. Let {d,:n>1} obey an exponential
distribution with B~ for large n. Then:

Iog m)
P(d, = x)=eF* = ¢ o
By the Borel-Cantelli lemma,
P (lim sup 2> > 1) = 1 because

2ieemn (5 =Disemn o) =2

=1 for each n so that

1092(71) -

1. Combining the two results,

Moreover sup —1—

lim sup 25 <

yield (22).

Again, we point out that the hypoth-
esis can be replaced by: “if the Riemann
hypothesis is true, then...”. The result re-
mains valid in a deterministic sense.

Theorem 4.2 If the prime gaps
obey an exponential distribution (f), then:

(n) -

n—-oo

Proof.

P (inf d > logln)) = P(d > logln) - P(d > logln) - P(dy > og(a)
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_n _log(n)
= [Ty exp (- 222)

=exp(XiL, (1)

=exp(—n) - 0 asn— o
It follows that lim inf —2— = 0.
n—oo log(n)

Bounds on the prime gaps can be
deduced based on the assumption of an
exponential distribution. Bertrand (1845)
gave a rough estimate of the prime gap d;;:

Bertrand: P;,+ -P, <P, (24)

Knowing that for large n, P,,~n log n, we
deduce that:

P,,+,- P, <nlog n, for large n.

Likewise, we can show that:

Pny1 — Py < log(log(n))
(25)

loglog(n)
Pn+1 -k < %
Proof.
P(d, = Pny1 — P, <log(log (n))) = exp (— %) -1 as n->»
Hence, P+, - P, <n log(log(n)) infinitely
often. Similarly,

P (dn < —loglogn(")) = exp (—loglog(n)) —1 asn - oo,

log log2(n)
Showing that:
Poyn =P < k’glffgi(grf)m infinitely often.
In fact,

Theorem: P,,, - P, < ¢ (n) in-
finitely often for all function ¢ (n) such that:

M

@ - 0.

Proof.

P(d, < p(n)) =exp (—]fg(z)) -1 if (—l:lpg(?(?l)) -0
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