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ABSTRACT 
 

The paper tackles two (2) problems related to the exponential 

distribution. The first concerns a detailed derivation of the minimum 

variance unbiased estimator of the scale parameter. The second focuses on 

the relationship of the expected value of the reciprocal of an exponential 

random variable which is shown to be equivalent to evaluating the 

logarithmic integral and the density of primes as found in the Prime Number 

Theorem. In the first problem, we showed that the minimum variance 

unbiased estimator of the scale parameter has a variance larger than the 

Cramer-Rao lower bound. In the second problem, we demonstrated that the 

expected value of the reciprocal of an exponential random variable also 

obtains the density of primes less or equal to a given large number x. The 

minimum variance unbiased estimator found in the first problem can then 

be utilized to find such an approximation to the density of primes for the 

second problem. The second problem provides a new way of viewing the 

problem of finding the density of primes less or equal to x. 

 

Keywords: unbiased estimator, minimum variance, exponential scale 

parameter, logarithmic integrals, density of primes 

 

 

1.0 Two Problems 

 

 A random sample of size n, 𝑥1, 𝑥2, … , 𝑥𝑛, is given from an exponential 

distribution: 

 

  𝑓(𝑥, 𝜃) = 𝜃ℯ−𝜃𝑥 ,      𝜃 > 0, 𝑥 > 0   (1) 
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It is wanted to find an unbiased estimator of 𝜃 with minimum variance. The maximum 

likelihood estimator (MLE) of 𝜃 can be achieved from the likelihood function: 

 

  𝐿(𝑥1, … , 𝑥𝑛;  𝜃) = 𝜃𝑛𝑒−𝜃 ∑ 𝑥𝑖
𝑛
𝑖=1     (2) 

 
by setting the derivative equal to zero: 

 

  
𝜕𝐿

𝜕𝜃
= 0       (3) 

 
The maximum likelihood estimator of 𝜃, namely, 

 

  𝜃 = arg (𝑚𝑎𝑥
𝜃

 𝐿(𝑥, 𝜃)) =
1

x̅
    (4) 

 

where �̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 , is a biased estimator of 𝜃, since: 

 

  𝐸(𝜃) = 𝐸 (
1

x̅
) ≥

1

𝐸(x̅)
= 𝜃    (5) 

 
by Jensen’s inequality (Lehman, 1984). The first problem is to find an unbiased 

estimator of  𝜃 with minimum variance. This is not a new problem (see Rao, 2010) 

but  is seldom discussed in statistical inference classes and, so, we deemed it 

important to provide a formal exposition of the solution. 

 

 The second problem, which has application in analytic number theory in 

relation to the topic on the density of primes, considers the exact instance of (1) for 

which 𝑛 = 1. In particular, let 𝑥 𝑑
~

 exp (𝜃) with density (1) and let 𝑆 =
1

𝑥
. The 

problem is to evaluate: 

 

  𝐸 (
1

𝑥
) = 𝜃 ∫

𝑒−𝜃𝑥

𝑥
𝑑𝑥

∞

0
     (6) 

 
We show that (6) is closely related to a variant of the logarithmic integral: 

 

  ℓ𝑖(𝑢) = ∫
𝑑𝑢

ln (𝑢)

∞

0
      

  (7) 
 
The logarithmic integral, in turn, is related to the offset logarithmic integral which 

estimates the density of primes less or equal to x: 

 

  𝐿𝑖(𝑥) = ∫
𝑑𝑢

ln (𝑢)

𝑥

2
= ℓ𝑖(𝑥) − ℓ𝑖(2)   (8) 

 
(Tao, 2013; Schoenfield, 1976). 
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2.0 Solution to the First Problem 

 
 From (2), we find that a sufficient statistic for estimating 𝜃 is given by: 

 
  𝑆 = ∑ 𝑥𝑖

𝑛
𝑖=1       (9) 

 
 
By using the moment – generating function (mgf) technique (Abramowitz  et al., 

1983) 

 

  𝑀𝑠(𝑡) = [𝑚𝑥𝑖
(𝑡)]

𝑛
=

1

(1−𝜃𝑡)𝑛    (10) 

 
We recognize that (10) is the mgf of a Gamma Random Variable with 𝛼 = 𝑛,

𝛽 = 𝜃, hence: 
 

  𝑓𝑠(𝑠) =
𝜃𝑛

Γ(𝑛)
 𝑠𝑛−1𝑒−𝜃𝑠,   𝑠 > 0, 𝜃 > 0    (11) 

 

 We calculate the expected value of 𝑠−1: 
 

  𝐸(𝑠−1) = ∫
𝜃𝑛−1

Γ(𝑛)

∞

0
𝑠𝑛−2𝑒−𝜃𝑠𝑑𝑠    (12) 

 

   =
𝜃𝑛

(𝑛−1)
∫

𝜃𝑛−1

Γ(𝑛−1)

∞

0
𝑠𝑛−2𝑒−𝜃𝑠𝑑𝑠 

 

   =
𝜃

𝑛−1
∙ 1  

Since 

 

 
𝜃𝑛−1

Γ(𝑛−1)
𝑠𝑛−2𝑒−𝜃𝑠𝑑

~
Γ(𝑛 − 1, 𝜃) 

 
It follows that an unbiased estimator of 𝜃 is: 

 

  �̃� =
𝑛−1

𝑠
=

𝑛−1

∑ 𝑥𝑖
𝑛
𝑖=1

= (
𝑛−1

𝑛
) .

1

�̅�
=

𝑛−1

𝑛
. 𝜃   (13) 

 

by the Lehman – Scheffe’s theorem, �̃� is an unbiased estimator of 𝜃 which is a 

function of a complete and sufficient statistic s, �̃� has the smallest variance among all 

unbiased estimators of 𝜃. 

 
  
 Theorem 1. Let 𝑥1, 𝑥2, … , 𝑥𝑛 be independent and identically distributed 

random observations from an exponential distribution with scale parameter 

𝜃. The uniformly minimum variance unbiased estimator of 𝜃 is: 
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  �̃� =
𝑛−1

𝑛
.

1

�̅�
  

 

where �̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 . 

 

Proof. The unbiasedness of �̃� is shown in (12). Sufficiency is established by 

the factorization theorem applied to (2). We need to demonstrate 

completeness: 

 

 ∫ 𝑧
∞

0
(𝑡)𝜃𝑒−𝜃𝑡𝑑𝑡 = 0,      𝜃 > 0, 𝑡 > 0 

 
Then 

  

 ∫ 𝑧
∞

0
(𝑡)𝜃𝑒−𝜃𝑡𝑑𝑡 = 0 ∫ 𝑧

∞

0
(𝑡)𝜃𝑒−𝜃𝑡𝑑𝑡 = 0  (14) 

 
 
However, (14) implies 𝑧(𝑡) = 0     ∀𝑡. The result follows by the Lehman – 

Scheffe’s theorem. ∎ 

 

 It will be of interest to find the variance of �̃�. For this, we require 𝐸(�̃�2): 
 

  𝐸(�̃�2) = (𝑛 − 1)2𝐸 (
1

𝑠2) 

 

   = (𝑛 − 1)2 ∫
𝜃𝑛

Γ(𝑛)
 𝑠𝑛−3𝑒−𝜃𝑠𝑑𝑠

∞

0
 

 

   =
(𝑛−1)2

(𝑛−1)(𝑛−2)
. 𝜃2 ∫

𝜃𝑛−2

Γ(𝑛)
 𝑠𝑛−3𝑒−𝜃𝑠𝑑𝑠

∞

0
 

 

   =
(𝑛−1)

(𝑛−2)
𝜃2. 1     (15) 

 
Hence: 

 

  𝑣𝑎𝑟(�̃�) = 𝐸(�̃�2) − [𝐸(�̃�)]
2
 

 

   = (
𝑛−1

𝑛−2
− 1) 𝜃2 

 

  𝑣𝑎𝑟(�̃�) =
𝜃2

𝑛−2
      (16) 

 
The Cramer – Rao lower bound can be calculated and compared to (16): 

 
  𝑙𝑜𝑔𝐿(𝑥, 𝜃 = 𝑛 log 𝜃 − 𝜃 ∑ 𝑥𝑖

𝑛
𝑖=1 ) 

 



 
 
Padua, Regalado, Perez, Azura                                                               J-HERD   Vol.3.  Issue 1.  2018 
 

29 
 

  
𝜕 log 𝐿

𝜕𝜃
=

𝑛

𝜃
− ∑ 𝑥𝑖

𝑛
𝑖=1  

 

  
𝜕2 log 𝐿

𝜕𝜃2 =
−𝑛

𝜃2  

 

  𝐼(𝜃) = 𝐸 (−
𝜕2 log 𝐿

𝜕𝜃2 ) =
𝑛

𝜃2    (17) 

 
 
It follows that: 

 

  𝑣𝑎𝑟(�̃�)
𝐶𝑅

=
1
𝑛

𝜃2

=
𝜃2

𝑛
      

  (18) 
 

The variance of �̃� is larger than the Cramer – Rao lower bound, however, 

they become similar for large n. 

 

3.0 Solution to the Second Problem. 

 

 In the second problem, we want to begin a connection between the 

exponential distribution (𝜃) and the logarithmic integral (7) which offers a good 

estimate to the number of primes less or equal to 𝑥 𝑜𝑟 𝜋(𝑥).. 
 
 Cramer (1936) averred that the prime gaps 𝑥𝑛: 
 
  𝑥𝑛 = 𝑃𝑛+1 − 𝑃𝑛   , 𝑛 = 1, 2, …    (19) 

 
have an estimated exponential distribution with 𝜃 = log(𝑛). The prime gaps {𝑥𝑛} can 

be viewed as arrival times (of primes) and so the reciprocal {𝑥𝑛}𝑛=1
∞  can be 

interpreted as rates of arrival i.e. one arrival per time. If the density of prime gaps is: 

 

  𝑓 𝑥𝑛
(𝑥) = 𝜃𝑒−𝜃𝑥        , 𝑥 > 0, 𝜃 > 0    

  (20) 
 

then, we are concerned on the behavior of {
1

𝑥𝑛
}

𝑛=1

∞
. In particular, 

 

  𝐸 (
1

𝑥
) = 𝜃 ∫

𝑒−𝜃𝑥

𝑥
𝑑𝑥

∞

0
     (21) 

 

Let 𝑡 = 𝑒−𝜃𝑥  , then (21) becomes: 
 

  lim
𝑥→∞

𝜃 ∫
𝑒−𝜃𝑥

𝑥
𝑑𝑥

𝑥

0
= lim

𝑥→∞
𝜃 ∫

𝑑𝑡

ln (𝑡)
= lim

𝑡→∞
[𝑙𝑖(𝑡)]

𝑡

0
   (22) 
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The logarithmic integral ∫
𝑑𝑡

ln (𝑡)

∞

0
 is divergent but the asymptotic expansion: 

 

  𝑙𝑖(𝑡) = ∫
𝑑𝑡

ln (𝑡)

𝑡

0
~

𝑡

ln(𝑡)
∑

𝑘!

(ln(𝑡))𝑘
∞
𝑘=0    (23) 

 
is valid for large t. Avoiding the singularity at 𝑡 = 0, we introduce the offset 

logarithmic integral: 

 

  𝑙𝑖(𝑡) = ∫
𝑑𝑢

ln (𝑢)
= 𝑙𝑖(𝑡) − 𝑙𝑖(2)

𝑡

2
    (24) 

 

   ~
𝑡

ln(𝑡)
∑

𝑘!

(ln(𝑡))𝑘
∞
𝑘=0 =

𝑡

log 𝑡
+

𝑡

(log 𝑡)2 +
2𝑡

(log 𝑡)3 +
6𝑡

(log(𝑡))4 +

⋯ for 𝑡 ≥ 2 
 
The number of primes less than or equal to t, denoted by 𝜋(𝑡), is given by the Prime 

Number Theorem (PNT) as: 

 

  𝜋(𝑡)~
𝑡

ln(𝑡)
      (25) 

 
proven independently by Hadamard and dela Vallee Poussin (1896). Van Koch 

(1901) proved that: 

 

  |𝜋(𝑡) − 𝐿𝑖(𝑡)| = 0(√𝑡 log 𝑡)    (26) 

 
and the constant in the big 0 notation was estimated by Schoenfeld (1976) to be: 

 

  |𝜋(𝑡) − 𝑙𝑖(𝑡)| <
√𝑡 log 𝑡

8𝜋
     (27) 

 
 The prime number theorem (PNT) assumes that primes are uniformly 

distributed on intervals of length t with probability 
1

ln(𝑡)
. Hence, the estimated number 

of primes on such intervals is 
𝑡

ln(𝑡)
. On the other hand, if the prime gaps 𝑥𝑛 are 

expected to obey an exponential distribution with parameter 𝜃 = log(𝑡), then the 

expected number of primes less or equal to t is precisely 𝐸 (
1

𝑥𝑛
), i.e. the expected 

number of primes per arrival time is 𝐸 (
1

𝑥𝑛
). 

 

 On the Density of 
1

𝑥𝑛
. The density of 𝑦 =

1

𝑥𝑛
 is useful for estimating the 

higher order moments of y. 

 

 Let =
1

𝑥𝑛
 , then: 
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  𝐹𝑦(𝑦) = 𝑃(𝑌 ≤ 𝑦) = 𝑃 (
1

𝑥𝑛
≤ 𝑦) 

 

   = 𝑃 (
1

𝑦
≤ 𝑥𝑛) = 𝑃 (𝑥𝑛 ≥

1

𝑦
) 

 

   = 1 − 𝑃 (𝑥𝑛 <
1

𝑦
) 

 

   1 − (1 − 𝑒
−

𝜃

𝑦) 

 

  𝐹𝑦(𝑦) = 𝑒
−

𝜃

𝑦     , 𝑦 > 0     (28) 

 
The density is found by differentiation: 

 
   

  𝑓𝑦(𝑦) =
𝜃

𝑦2 𝑒
−

𝜃

𝑦, 𝑦 > 0     (29) 

 

 

 On an Estimate for the Density of Primes. 

 

Using the results of the previous section, we find that an estimator for the 

density of primes less or equal to x is: 

 

  𝜋(𝑥)~ (
𝑛−1

𝑛
) .

1

�̅�
  𝑙𝑖(𝑥)       (30) 

 

 �̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  is the sample mean of all prime gaps in the interval [1, 𝑥]. 
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