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ABSTRACT 

This paper uses the logistic map as a primary tool for Rapid 
Ecosystem Assessment (REA). The behavior of the iterates of the logistic 
map depends on the growth parameter 𝜃 which conveys information about 
how well the ecosystem supports the growth of the organism. The ratio 
𝜏 =  𝜃

4
, expressed in percentage, indicates the proportion of the 

environment which is still in good condition. An estimator for 𝜃 based on 
available data is given as 4y, where y is the largest observed value. The 
properties of the estimator are derived and discussed. Data on the 
fisheries volume of production by Region and by Province were obtained 
from the Fisheries Statistics of the Philippines  from 2001 to 2015 on 
which the growth parameters were estimated. Results indicate that in the 
Caraga region, 96% of the marine environment remains good and capable 
of sustaining fisheries. On the other hand, Region IV-A has only 70% of its 
fishing grounds, staying in excellent condition while the remaining 30% of 
the fishing ground is no longer able to sustain fisheries production. The 
effects of industrialization and overfishing in Region IV-A (Calabarzon 
Special Economic Zone) were identified as possible causes of the gradual 
decline of the excellent fishing grounds in this region. More rigorous 
Marine Environment Assessment to pinpoint the 30% degraded area and 
the establishment of Marine Protected Areas to resuscitate these fishing 
grounds are suggested as interventions. 
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1.0 Introduction 
 

Environmental assessment or ecosystem assessment is often required by 
authorities to ensure that resource development projects e.g. land use, do not impact 
negatively on biodiversity. Such assessment procedures involve detailed protocols 
for determining the status of biological and non-biological environment parameters. 
Unfortunately, such environmental assessment protocols are time-consuming and 
costly in many cases (White, 1998). Alcala (2001) produced a comprehensive 
assessment of the status of Marine Protected Areas (MPA) in Central Visayas in a 
two-year funded project by the Department of Foreign Affairs (DFA). However, 
when it is desired to obtain quick preliminary information about an ecosystem, rapid 
assessment tools need to be developed. This paper deals with the logistic map as a 
primary tool for Rapid Ecosystem Assessment (REA). 

 
 May (1976) first investigated the logistic map: 
 
  𝑥𝑛+1 =  𝜃𝑥𝑛(1− 𝑥𝑛)    ,   0 <  𝜃 ≤ 4, 0 < 𝑥𝑛   ≤ 1               (1) 

where  𝑥𝑛 represents the number of organisms in an environment divided by the 
carrying capacity M of the environment and  𝜃 is a growth parameter that conveys 
information about how well the ecosystem supports the growth of the organism. The 
logistic dynamics of population growth were observed by May (1976) under 
laboratory conditions for fruit-flies. He found that the parameter  𝜃 controls the 
behavior of the population dynamics of the flies. For instance, when the 
environment was so designed as to suppress the growth of the flies, e.g. controlling 
the food source of the organisms i.e. the value of 𝜃 ranges from 0 to 1, the 
population eventually becomes extinct. 

 Thus, in practice, the value of 𝜃 is a useful indicator of the environmental 
conditions supporting the growth of biological organisms. Hayes (1993), in a US 
Defense Department funded project, provided maximum-likelihood estimator of  𝜃 
based on the model: 

  𝑥𝑛+1 =  𝜃𝑥𝑛(1− 𝑥𝑛) + 𝜀𝑛+1                           (2) 

 where the 𝜀′𝑠 are random noise from a known symmetric distribution F(.). 

His estimator is given by: 

  𝜃  � =  ∑𝑤𝑖 𝜃𝚤�       ,    ∑𝑤𝑖 = 1,          𝜃𝚤 � =  𝑥𝑖+1
𝑥𝑖 (1−𝑥𝑖 )

                      (3) 
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and was shown to be an asymptotically efficient estimator of  𝜃. In this paper, we 
propose a non-parametric counterpart of (3) and demonstrate its statistical 
properties as well. The main advantage of the proposed estimator in this paper over 
that of Hayes (1993) is the ease with which one can apply the estimator to actual 
time-series data. 

2.0 Parameter Estimation Model  
 

The logistic map (1) illustrates varying population behavior as the growth 
parameter 𝜃 is varied. When 0 <  𝜃 ≤ 1, the population {𝑥𝑛} tends to zero 
eventually, 𝑋𝑛  → 0 𝑎𝑠 𝑛 →  ∞;  when 1 <  𝜃 ≤ 3 , the population   {𝑥𝑛} settles to 
a single periodic points  𝜃−1

𝜃
  i.e.   𝑋𝑛  → 𝜃−1

𝜃
  as n→ ∞ . Thus, when 𝜃 = 2 the 

population {𝑥𝑛} eventually occupies 𝜃−1
𝜃

= 1
2
 or 50% of the environment’s 

maximum carrying capacity. For  𝜃 > 3, the population settles to period 2 cycles, 
period 4 cycles, period 8 cycles..., period 2n cycles until it becomes chaotic for =  4. 
Chaotic systems are characterized by unpredictable periods of population “busts” 
and “booms” and, further, describe the growth of biological organisms in the wild 
with a pristine environment. 

 When  𝜃 = 4, the logistic map: 
  𝑋𝑛+1 = 4𝑋𝑛  (1-𝑋𝑛)             (4) 
 

is chaotic and the realizations  {𝑥𝑛} behave like random quantities. Applying the 
Frobenius –Perron operator (Devaney, 1997), these pseudo-random numbers obey a 
beta distribution with  ∝= 1

2
, 𝛽 = 1

2�  given by: 
 
  𝜌(𝑥)= 1

 𝜋�𝑥(1−𝑥)
        ,    0< 𝑥 < 1                                              (5) 

 
The set of all attractors of (4) is the interval [0,1] and, in general, the set of 

attractors of (1) is the interval �0, 𝜃
4
�.   Using this information, we obtain the first 

non-parametric estimate  𝜃 ∶ 
 
                      𝜃� = 4 max  {𝑥𝑛}             (6) 
 

Estimator (6) is intuitively appealing. For instance, under a chaotic regime, the 
chaotic attractors lie on the interval  [0,1], hence, max {𝑥𝑛} =1 and 𝜃𝚤 � =4 . 1 =4. 
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When the maximum number of the organism is 50% or ½ of the carrying capacity, 
then   𝜃�= (4 )( ½) = 2  as earlier shown. 

 
 However, given a time series {𝑥𝑡} of observations, the serial sequence 

𝑥𝑡  𝑎𝑛𝑑 𝑥𝑡+1   need not be related by the logistic map (1). These observations may 
be thought of as being “embedded” in the space of observations generated by the 
logistic map. The problem is now to recover the embedding space, that is, find the 
appropriate logistic map that the observations may have come from. More 
succinctly, find 𝜃 in Equation (1) given the time series {𝑥𝑡} . 

 
 In order to accomplish this, we need to treat the realizations of Equation (1) 
as random quantities that obey a probability distribution. In particular, for values of 
𝜃 not equal to 4, we consider the limiting distribution of these realizations. We 
begin by defining terms: 

 
 Definition 1. Let f be a continuous one-dimensional map such that: 
 
   𝑥𝑡+1 = 𝑓(𝑥𝑡  ), 
  x* is a fixed point of f iff 𝑥∗ = 𝑓(𝑥∗). 
 

When 𝜃 is between 0 and 1 in the logistic map, the fixed point is x* = 0; when it is 
between 1 and 3, it has two fixed points x* = 0 and 𝑥∗ =  𝜃−1

𝜃
 . The fixed point x* = 

0 is unstable and repels points away from it, while the other fixed point is a stable 
fixed point and attracts points to it. These are periodic points of period 1. 

 
Definition 2. Let f be a continuous one-dimensional map such that: 

   𝑥𝑡+1 = 𝑓(𝑥𝑡  ), 
x* is a fixed point of f of period n  iff 𝑥∗ = 𝑓𝑛(𝑥∗)  and n is the 
smallest positive integer. 

 
When 𝜃 is between 3 and 3.4494, the logistic maps has a period 2 orbit, namely: 

 

𝑥∗ =  
(1 +  𝜃) ± √𝜃2 −  2𝜃 − 3

2𝜃
                                                                     (7) 

Starting from any initial value 𝑥0 , the successive iterates eventually toggles 
between these two values. For 𝜃 > 3.4494, period 4, period 8, period 16,..., period 
2𝑛  fixed points are observed. 
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 For large n, and when  1 < 𝜃 ≤ 3, the limiting distribution of the iterates is 
degenerate at  𝜃−1

𝜃
. 

   𝑃(𝑥 =  𝜃−1
𝜃

) = 1                                                                 (8). 
 

When 3 < 𝜃 ≤ 3.4494, the limiting distribution of the iterates is a Bernoulli 
distribution: 

 

𝑃 � 𝑥 =
(1 +  𝜃) + √𝜃2 −  2𝜃 − 3

2𝜃
  � =  𝑝 

 

𝑃 � 𝑥 =
(1 +  𝜃) − √𝜃2 −  2𝜃 − 3

2𝜃
  � =  1 − 𝑝                                        (9) 

 
For larger values of 𝜃, the  limiting distribution of the iterates is a multinomial 
distribution. It can be shown that for the logistic map, when the number of periodic 
points is infinite via period doubling bifurcation, the limiting distribution is equal to 
its ergodic density which is the beta distribution previously given. 

 
 Consider the specific case in which there is a period 2 orbit and the iterates 
toggle  between the smaller and the larger periodic points. Denoting the smaller 
periodic point by x and the larger by y, a time series realization of this situation may 
consists of the following {𝑥, 𝑥,𝑦,𝑥, 𝑦, 𝑦, ,𝑦, 𝑥,𝑥,𝑦, 𝑦, 𝑦, … } towards the tail end of 
the series, in contrast to the theoretical behaviour using the logistic map which is 
either {𝑥, 𝑦. 𝑥,𝑦,𝑥, 𝑦, 𝑥,𝑦, … . } or {𝑦,𝑥, 𝑦,𝑥,𝑦, 𝑥, 𝑦,𝑥, … }. Using Equation (6) as an 
estimator of 𝜃, we have 

 
𝜃� = 4 max  {𝑥𝑛} = 4𝑦 

 
However,  𝑦 ≠ 𝑚𝑎𝑥{𝑥𝑛} =  𝜃

4
.  Thus, 

 
 Lemma 1. The estimator 𝜃� = 4 max  {𝑥𝑛}  is a biased estimator of 𝜃. 
 Proof. As shown above. 
 

We note, however, that 𝑦 = 𝑚𝑎𝑥 �𝑥𝑝𝑗�  𝑜𝑣𝑒𝑟 𝑗 where 𝑥𝑝𝑗  is a periodic point of 

period n of the logistic map. Let: 

𝛾 =  │
𝜃
4
− 𝑦│ 
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Note that 𝛾 is the distance between the largest value of {𝑥𝑡} and the largest fixed 
point.  

 
Lemma 2.  The quantity: 

𝛾 =  │
𝜃
4
− 𝑦│ ≤  

1
2𝑛−1 �

𝜃
4
� 

 
where n is the number of stable  fixed points of the logistic map. 

  Proof. The degenerate case when the fixed point is zero is obviously 
satisfied i.e. y = 0 and n =1. Similarly, when the single stable fixed point is  𝜃−1

𝜃
, 

then 
 

𝛾 =  │
𝜃
4
−
𝜃 − 1
𝜃

│ =  │
𝜃2 − 4𝜃 + 4

4𝜃
│ ≤  �

𝜃
4
� 

 
When there are two stable fixed points, then one fixed point is to the left of 𝜃

8
 and 

the other is to the right of it. Hence, 

𝛾 =  │
𝜃
4
− 𝑦│ ≤  

1
2
�
𝜃
4
� 

 
Continuing in this fashion, we find that if there are n stable fixed points, then half of 

them will be to the left of 1
2𝑛−1 

�𝜃
4
�  and half to the right.∎ 

 Taking the largest possible value of 𝜃 = 4, we find an estimate of 𝛾 that is 
independent of 𝜃. The estimator (6) can now be modified with less bias, namely: 

 
𝜃� = 4 (𝑦 +  𝛾)                                                                   (10) 

 
Moreover, the bias tends to zero as the number of stable fixed points increases to 
infinity. 

Corollary.  The quantity: 

𝛾(𝑛) =  │
𝜃
4
− 𝑦│ → 0 𝑎𝑠 𝑛 → ∞ 

 
where n is the number of stable  fixed points of the logistic map. 
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3.0 Estimation of the Maximum Carrying Capacity M and Sample Limit 
Distributions 

In  estimator (6), the input information is  {𝑥𝑛} which are scaled values of 
the actual number of organisms divided by the maximum carrying capacity M. The 
estimators are sensitive to changes in the values of M, hence, a reliable estimate M 
is needed. 

Assuming natural processes, we expect that: 

 P(-2.576<  𝑚−𝐸 (𝑚)
𝜎(𝑀)

< 2.576 ) = 99.9 %                                           (11) 

Hence, the maximum carrying capacity is 𝑀� = 𝐸 (𝑚) +  2.576 𝜎(𝑚)  with 
99.9 % probability.  

 The succeeding figures show the limiting distribution of the iterates of the 
logistic map for different values of 𝜃 and increasing number of stable fixed points.  
Note that all the biases are less than 𝛾 = 0.001 and decreases with increasing 
number of stable fixed points. 

 

Figure 1: Limiting Distribution with Two Stable Fixed Points 
Largest  Fixed Point:0.79946, Maximum Possible Value: 0.8000, Bias: 0.00054 
 

 
Figure 2: Limiting Distribution with Four Stable Fixed Points 
Largest Fixed Point: 0.87741, Maximum Possible Value: 0.8775, Bias: 0.00009 
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Figure 3: Limiting Distribution with Eight Stable Fixed Points 
Largest Fixed Point: 0.88746, Maximum Possible Value : 0.88750, Bias:0.00004 
 
4.0 Rapid Assessment of the Fisheries Ecosystem in the Philippines 

  Data on the fisheries volume of production by Region and by Province were 
obtained from the Fisheries Statistics of the Philippines (Philippine Statistics 
Authority, Vol.12-24, 2016) from 2001 to 2015. 

Table 1 shows the estimated growth parameter 𝜃 for each of the regions of 
the country. Tabular values show that the best fishing grounds are, in order of 
“wellness”, Caraga, Region VI (Western Visayas) and Region IX (Zamboanga 
Peninsula). Of the top three fishing grounds, Caraga registered a growth parameter 
of 3.8282 which indicates that around 96% of the marine fishing environment of 
this region is in an excellent condition while around 4% has been degraded. 
Western Visayas, on the other hand, boasts of 93% good fishing ground with only 
7% of the marine environment ill-suited for sustaining fisheries in the region. 
Zamboanga Peninsula, the country’s main area for sardines, has 91% intact and 
good fishing ground while 9% of the fishing area is potentially in peril. We note 
that two of the three top fishing grounds in the country are in Mindanao while the 
third is in the Visayas region.  

In contrast, the three least fit fishing grounds are Region IV-A 
(Calabarzon), Region IV-B (Mimaropa) and Region 8. In particular , the fishing 
grounds in Region IV-A or the Calabarzon area are in “critical condition” with 
estimated growth parameter of 2.7700 which means that the area can only support 
69% of the carrying capacity of the marine environment there, unless something is 
done to improve the conditions in this area. A little less than a third of the fishing 
ground (30%) in the region is incapable of sustaining fish production in the region.  
Conditions in the contiguous region, Region IV-B or the MIMAROPA are 
significantly better than in Region IV-A posting a growth parameter of 3.1088 
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which means that 78% of the fishing ground in this region remains good but 22% of 
the marine environment in this region is no longer productive. Region 8 or the 
Eastern Visayas region follows  very closely registering a growth parameter of 
3.1296 indicating that 78% of the fishing area is still in good condition similar to 
that of Region IV-B. . It is noted that  two of the least fit marine environments are 
located in Luzon while only one is found in the Visayas area. The poor showing of 
the Eastern Visayas region may be attributed to the damage brought about by 
Typhoon Yolanda in 2013 which severely damaged the marine ecosystem of the 
surrounding waters of the Samar and Leyte provinces.  Regions IV-A and IV-B are 
special economic zones with massive industrialization, which consequently 
adversely impacted on the surrounding fishing grounds. Overfishing and marine 
exploitation of the fishing grounds in these three areas cannot be ruled out as  
possible explanations as well. 

Table 1: Growth Parameter Theta Based on the Maximum Estimate 

Variable Mean 
St. 

Dev. M 
Theta 

(Ɵ) 

Percent of Fishing 
Ground Suitable for 

Fisheries 

Rank  

CAR 3643 389 4645 3.6416 
91.04% 4 

I 126696 35009 216879 3.2128 
80.32% 12 

II 54535 9098 77971 3.328 
83.20% 9 

III 238593 41064 344374 3.2296 
80.74% 11 

NCR 112903 32291 196085 3.428 
85.70% 8 

4A 351906 96371 600157.7 2.77 
69.25% 17 

4B 597448 137786 952385 3.1088 
77.72% 16 

V 241243 54663 382055 3.1444 
78.61% 14 

VI 402455 31115 482607 3.7372 
93.43% 2 

VII 215524 19910 266812 3.6076 
90.19% 5 

VIII 161627 42032 269901 3.1296 
78.24% 15 

IX 577078 97383 827937 3.6585 
91.46% 3 

X 136753 26535 205107 3.1748 
79.37%  13 

XI 60877 7454 80079 3.5012 
87.53% 6 
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XII 271814 42272 380707 3.4536 
86.34% 7 

ARMM 753666 139705 1113546 3.2664 
81.66% 10 

Caraga 95934 7847 116147.9 3.8282 
95.71% 1 

 

Figure 4 shows the time series plot of the fishery production for the top 
three best marine environments in the country. The plot suggests that the Caraga 
region’s fishing grounds are least disturbed judging from the low fishery outputs, 
hence, explaining the excellent growth parameter earlier computed. On the other 
hand, the second and third best fishing grounds have far greater fishery production 
indicating significantly greater disturbance to the marine ecosystems of these two 
areas, namely, Region VI and Region IX. From these observations, one may deduce 
that the growth parameter 𝜃 may also be used as an indicator of the degree of 
disturbance experienced by the ecosystem: the greater the value of the growth 
parameter, the lesser is the disturbance of the environment and conversely. 

  

Figure 4: Fishery Production of the Top Three Fishing Grounds 

Figure 5 shows the time series plot of the fishery production of the three 
least fit fishing grounds in the country. Region VIII has the least fishery production 
among the 3 regions wtith the least fit fishing grounds. This means that among the 
three regions, the fishing grounds of Region 8 had been least exploited and hence, 
least disturbed as well  Consequently, one would expect that the growth parameter 
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in this region would be the highest of the three regions. Indeed, the computed 
growth parameter for Region 8 posted the largest value of 3.1296.  The cases of 
Regions IV-A and IV-B tell a slightly different story. While the time series plot 
indicates that Region IV-B had higher fishery production than Region IV-A and so, 
one would expect the growth parameter in Region IV-B to be lower than that of 
Region IV-A. However, this is not the case since the growth parameter for Region 
IV-A is 2.7700 as compared to Region IV-B which registered a higher value of 
3.1088. This phenomenon can be explained when we consider the areas of the 
fishing grounds of the two regions. Region IV-A has a significantly lesser fishing 
area than Region IV-B. Thus, for the same number of fishermen, Region IV-B 
would expectedly yield greater fishery production. That is, a more  refined 
characterization of the wellness of the marine environment would have to take into 
account both the growth parameter 𝜃 and the area of the fishing ground: 

              
𝑓𝑖𝑠ℎ𝑒𝑟𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑓(𝑔𝑟𝑜𝑤𝑡ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟,𝑎𝑟𝑒𝑎 𝑜𝑓 𝑓𝑖𝑠ℎ𝑖𝑛𝑔 𝑔𝑟𝑜𝑢𝑛𝑑)                          
(11) 

 

Figure 5: Time Series of Fisheries Production of the Lowest Three Regions 

5.0 Conclusion 

The study showed the efficacy of using the growth parameter of the logistic 
mapping in providing a rapid assessment of an ecosystem. The technique can be 
used as a preliminary rapid assessment of a biological ecosystem which can then be 
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followed by a more detailed environment assessment protocol. The technique 
requires information on the number of biological organisms recorded as a time 
series. The study also hints on the possibility of expressing the biological 
production as a function of the growth parameter and the area of the biological 
ecosystem under study. 
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