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ABSTRACT 

 
The dynamical system represented by the logistic map is 

formulated as a stochastic process based on its periodic points both 
in the chaotic and non-chaotic cases. An estimator for the 
parameter of the logistic map is given by 𝜃� = 4 𝑚𝑎𝑥𝑖  {𝑋𝑖}. The 
performance of the estimator is assessed through Monte Carlo 
simulation although theoretical results are likewise presented in the 
paper. 
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1.0 Introduction 
 

Applications of the evolution of dynamical systems abound in control 
theory such as in signal processing and control of chaos (Ott, Grebogi and Yorke, 
1990). Hao and Godbole (2014) suggested using the properties of dynamical 
systems in predicting the largest earthquake in a given region in a year where the 
number of earthquakes N is random. In particular, the dynamics of the simple 
logistic map were studied by May (1976) in the context of the population of 
fruitflies: 

 
            𝑋𝑛+1 = 𝜃𝑋𝑛(1 − 𝑋𝑛),   0 < 𝑋𝑛 < 1,    0 < 𝜃 ≤ 4  (1) 
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The parameter θ is referred to as the biotic potential of the environment supporting 
the biological organism. Hayes (1997) provided an alternative stochastic 
formulation of (1):  
 
 𝑋𝑛+1 = 𝜃𝑋𝑛(1 − 𝑋𝑛) + 𝜀𝑛     (2) 
 
where 𝜀𝑖′𝑠 are iid errors. He essentially estimated 𝜃 through a weighted average of: 
 
 𝜃𝑖 = 𝑋𝑖

𝑋𝑖−1(1−𝑋𝑖−1)
 ,𝑖 = 1, 2, … ,𝑁    (3) 

 
For many technological applications, however, it is important to provide a quick 
and accurate estimate of the parameter θ.  A simple non-parametric estimate of this 
parameter is suggested in this paper using the largest order statistics of the 
observations. Use of the proposed estimator was tried by Padua and Lapinig (2017) 
in the context of rapid ecosystems appraisal of the marine fishing grounds in the 
Philippines. 
 
  
2.0 Analytic Properties of the Logistic Map 
 
We begin by defining a fixed point of a dynamical map. 
 
Definition 1. (Devaney, 1997) A point x* is a fixed point of 𝑋𝑛+1 = 𝑓(𝑥𝑛  ) iff 
𝑥∗ = 𝑓(𝑥∗ ). 
 
The map (1) has fixed points at: 
 
  𝑥∗ = 0 and   𝑥∗ = 𝜃−1

𝜃
     (4) 

 
The stability of the fixed points depends on the Jacobian: 
 
  |𝑓′(𝑥)| = |𝜃 − 2𝜃𝑥|     (5) 
 
The fixed point 𝑥 = 0 is an attracting fixed point (stable) if: 
 
  |𝑓′(0)| = 𝜃 ≤ 1     (6) 
 
while it repels (unstable) points if: 
 
  |𝑓′(0)| = 𝜃 > 1 
 
Starting from any initial value 𝑥0, then 𝑥1,𝑥2, … , 𝑥𝑛 → 0 if 𝜃 ≤ 1. On the other 
hand, the fixed point 𝑥 = 𝜃−1

𝜃
 is an attracting fixed point if: 
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  �𝑓′ �𝜃−1
𝜃
�� = �𝜃 − 2𝜃 �𝜃−1

𝜃
 �� < 1 

 
        = |−𝜃 + 2| < 1 or 1 < 𝜃 ≤ 3  (7) 
 
and  is a repelling fixed point if: 
 
  �𝑓′ �𝜃−1

𝜃
�� = �𝜃 − 2𝜃 �𝜃−1

𝜃
 �� > 1 

 
        = 𝜃 > 3 
 
Starting from any initial value, then 𝑥1,𝑥2, … , 𝑥𝑛 →

𝜃−1
𝜃

 provided 1 < 𝜃 ≤ 3 
otherwise, if 𝜃 ≤ 1, 𝑥1,𝑥2, … , 𝑥𝑛 → 0. 
 
 In the range  0 < 𝜃 ≤ 3  , the logistic map has two(2) period 1 orbits; as 𝜃 
increases in the range 3 < 𝜃 ≤ 3.44904.. the stable period 1 orbits lose their 
stability and new period 2 orbits take their place. Periods 4, 8, 16, 32…2𝑛 orbits are 
observed as 𝜃 is progressively increased. At 𝜃 = 3.57 …, the onset of chaos, in 
which periodic points of all orders begin to appear, the motion of the logistic map 
becomes unpredictable.  When 𝜃 = 4, the set of all aperiodic attractors constitute a 
dense subset of [0,1]. 
 

Definition 2. A subset S of [0, 1] is a dense subset of [0, 1] iff for each 
𝑥𝑝 ∈ 𝑆 there is a point 𝑥 ∈ [0, 1] such that �𝑥𝑝 − 𝑥� < 𝜀 for all 
𝜀 > 0. 

 
In a chaotic system, every point visits any sub – interval of [0, 1] a finite number of 
times and has periodic points of all orders including infinity. 
 
 Regardless of the value of θ > 1, however, the logistic map is maximum at 
𝑥 = 1

2
 and has the maximum value 𝑥 = 𝜃

4
.  If at the nth iterate, 𝑥𝑛 =  𝜃

4
 , then the 

next iterate 𝑥𝑛+1 gives the minimum value of the system, that is, 
 
  𝑥𝑛 = 𝜃

4
 then 𝑥𝑛+1 = 𝜃2

16
(4 − 𝜃), 𝑛 = 0, 1, 2, …  (8) 

 
Hence, starting from any initial value 𝑥0 𝜖 (0,1), the logistic map goes through a 
series of transients and gets locked in the range 𝜃

2

16
(4− 𝜃) ≤  𝑥𝑛  ≤  𝜃

4
.  In the 

special case when 𝜃 = 4, then the range of the iterates fall between: 
 
  𝜃2(4−𝜃)

16
= 0 and 𝜃

4
= 1     (9) 
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3.0 Stochastic Models and Invariant Measures 
 
 Since we cannot expect to know the chaotic dynamics precisely, we need a 
statistical description. From the bifurcation map it appears that for some parameter 
values the iterated points cover intervals of the line with some density or probability 
distribution. We can use this to define the “invariant measure” of the attractor. We 
begin by proving: 
 
 Lemma 1. Let 𝑥𝑛+1 = 4𝑥𝑛(1− 𝑥𝑛), 𝑥𝑛 ∈ [0, 1]. Then, starting from 

a set of  initial values 𝑥0 ∈ (0, 1), 
 
   𝑥𝑛𝑑~ 𝐵𝑒𝑡𝑎 �1

2
, 1
2
� , n = 1,2,3,…. 

 
 Proof. Assume n is large and let 
 
   𝑦 = 4𝑥(1− 𝑥)  ,𝑥 ∈ (0, 1),   𝑥𝑑

~
∪ (0, 1). 

 
  Let 𝑥 = 1

2
(1− 𝑐𝑜𝑠𝜋𝑥) and so: 

 
   𝑌 = (1 − 𝑐𝑜𝑠𝜋𝑥) (1 + 𝑐𝑜𝑠𝜋𝑥) = 𝑠𝑖𝑛2𝜋𝑥. (10) 
 
  Thus, 
 
   𝑥 = 1

𝜋
𝑠𝑖𝑛−1��𝑦�    (11) 

 
  The Jacobian of the transformation is: 
 
   𝐽 = ± 1

2𝜋�𝑦(1−𝑦)
    (12) 

 
  It follows that 
 
   𝜌(𝑦) = 2. |𝐽| = 1

𝜋�𝑦(1−𝑦)
,   𝑦 ∈ (0, 1)  (13) 

 
  Equation (16) is the beta density with 𝛼 = 1

2
,𝛽 = 1

2
     ∎ 

 
 Lemma 1 shows that if we have a time series whose values are between 0 
and 1 and 𝑥1 ≠ 𝑥2 ≠ ⋯ ≠ 𝑥𝑛 for all n with probability 1, then the beta density (13) 
reasonably approximates its probability distribution. Moreover, Lemma 1 assumes 
that the initial values 𝑥0 come from dense subset S of the interval [0, 1]. The initial 
values constitute the set of periodic attractor of this logistic map. 
 
 We can generalize Lemma 1 as follows: 
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 Theorem 1. Let 𝑥𝑛+1 = 𝜃𝑥𝑛(1 − 𝑥𝑛), n = 1,2, 3…. Then, starting 

from a set of  initial values 𝑥0 ∈ (0, 1), there exists an N > 0 such 
that for all 𝑛 ≥ 𝑁 

 
   𝑥𝑛𝑑~   4

𝜃
𝐵𝑒𝑡𝑎 �1

2
, 1
2
�  and 0 <  𝑥𝑛  ≤  𝜃

4
  

 
 Proof. The periodic attractors  of the logistic map lie on the range 0 <
 𝑥𝑛  ≤  𝜃

4
 for 1 < 𝜃 ≤ 4, hence, there exists an iterate N for which all successive 

iterates of the logistic map are locked within this interval. Set 
 

𝑦 =  𝜃𝑥(1− 𝑥), 𝑥𝜀 (0,1) 
 

𝑥 =  
1
2

 (1 − cos
𝜋𝜃
4

 𝑥) 
 
from which we obtain: 

𝑦 =  
𝜃
4

 𝑠𝑖𝑛2(
𝜋𝜃
4

 𝑥) 
or 

                                       𝑥

=  
4
𝜋𝜃

 𝑠𝑖𝑛−1 ��
4𝑦
𝜃

 � .                                                                                  (14) 

 
 
The Jacobian of the transformation (14) is: 
 

𝐽 =  
8
𝜋𝜃2

 
1

�4𝑦
𝜃  (1−  4𝑦

𝜃

 

from which: 
 

𝑓(𝑦) =   
16
𝜋𝜃2

 
1

�4𝑦
𝜃  (1−  4𝑦𝜃

 , 0 <  𝑦 ≤  
𝜃
4

                                        (15). 

 
If we let 𝑧 =  4𝑦

𝜃
, then we can write (15) as: 

 
 𝑔(𝑧) =  4

𝜃
 1
𝜋�𝑧(1−𝑧)   

, 0 < 𝑧 < 1, 𝑜𝑟 𝑡ℎ𝑒 𝑏𝑒𝑡𝑎 (. 5, .5)𝑑𝑒𝑛𝑠𝑖𝑡𝑦.∎ 
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Note: Total aperiodicity is required and is implicitly assumed above. This 
requirement tells us roughly that the orbit smoothly fills some area, and is not 
concentrated at a few points. Then the measure is in some sense smooth as well. 
However, this is not satisfied for the logistic map when periodic orbits of finite 
orders are present. We require instead an invariant probability mass function as 
given in the next theorem. 

 
Theorem 2. Let {𝑥𝑡}𝑡=1𝑁  be a sequence of uniformly distributed random 
variables on (0, 1) and N be a non – negative integer – valued random 
variable. Suppose that 𝑦𝑖 = 𝜃𝑥𝑖(1 − 𝑥𝑖)  , 0 < 𝜃 < 4. 
 

 𝑔𝑦(𝑦𝑖) = 1
𝑁

�𝑦𝑖𝑏 �
−12�1−𝑦𝑖𝑏 �

−12

∑ �𝑦𝑖𝑏 �
−12�1−𝑦𝑖𝑏 �

−12𝑁
𝑖=1

     , 0 < 𝑦𝑖 ≤ 𝑏  (18) 

 
where 𝑏 = 𝜃

4
. 

 
Proof. Note that 
 
 𝑓𝑥,𝑖(𝑥𝑖 , 𝑖) = 𝑓(𝑥𝑖|𝑖 = 𝑘).𝑃(𝑖 = 𝑘) = 1 ∙ 1

𝑁
= 1

𝑁
 ,

 𝑖 = 1, 2, … , 𝑘
𝑘 = 1, 2, … ,𝑁 

 
Let 
 𝑋𝑖 = 1

2
(1− 𝑐𝑜𝑠 𝑘𝑥𝑖) where k is a normalizing constant 

 𝑌𝑖 = 𝑏 𝑠𝑖𝑛2 𝑘𝑥𝑖  

 𝑥𝑖 = 1
𝑘
 𝑠𝑖𝑛−1 �𝑌𝑖

𝑏
 

 𝑑𝑋𝑖
𝑑𝑌𝑖

= 1
2𝑘
∙ 1

�𝑌𝑖
𝑏 �1−

𝑌𝑖
𝑏 �

 

Hence,  
 

 𝑔(𝑌𝑖) = 1
𝑁
∙ 1
𝑘
�𝑌𝑖
𝑏
�
−12 �1 − 𝑌𝑖

𝑏
�
−12 

 

Put 𝑘 = ∑ �𝑌𝑖
𝑏
�
−12𝑁

𝑖=1 �1 − 𝑌𝑖
𝑏
�
−12 to obtain: 

 

 𝑔(𝑌𝑖) = 1
𝑁

 
�𝑌𝑖𝑏 �

−12�1−𝑌𝑖𝑏 �
−12

∑ �𝑌𝑖𝑏 �
−12�1−𝑌𝑖𝑏 �

−12𝑁
𝑖=1

 , 0 < 𝑌𝑖 ≤ 𝑏.∎ 

 
Corollary: If 𝜃 = 4, then 
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 𝑔(𝑦) = 1

𝜋�𝑌(1−𝑌)
 , 0 < 𝑦 < 1. 

 
Proof: If 𝜃 = 4, then 𝑏 = 1 and 𝑁 → ∞ so: 
 

 1
𝑁 

 ∑ 𝑌𝑖
−12(1− 𝑌𝑖)

−12𝑁
𝑖=1 → ∫ 𝑦−

1
2(1− 𝑦)−

1
2

1
0 𝑑𝑦 = 𝜋. 

 
Hence: 
 
 𝑔(𝑦) = 1

𝜋�𝑌(1−𝑌)
 , 0 < 𝑦 < 1           ∎ 

 
 The net effect of Theorem 1 is to put discrete probability mass functions to 
the stable fixed points of the logistic map prior to the onset of chaos. 
 
3.0 Largest Order Statistics 

 
For the logistic map, we have established that 0 <  𝑥𝑛  ≤  𝜃

4
  for any n. Hence, 

it is natural to estimate the parameter 𝜃 by: 
 

𝜃� = 4𝑚𝑎𝑥1≤𝑖 ≤𝑛 {𝑥𝑖}                                                                             (19) 
 
In turn, we require the probability distribution  of: 
 

𝑦 = max{𝑥1,𝑥2 … 𝑥𝑛  }                                                                           (20) 
 
It is shown in elementary texts that .𝐹𝑌(𝑥) =  𝐹𝑛(𝑥) but we deviate from this theory 
since we are  considering that the number N of 𝑥𝑖′𝑠 is random. 
 
 Following Hao and Godbole (2014), we set up the problem as follows: 
Suppose 𝑋1,𝑋2 … ,𝑋𝑛. are i.i.d. random variables following a continuous 
distribution on [0, 1] with probability density and distribution functions given by 
f(x) and F(x) respectively. N is a random variable following a discrete distribution 
on {1, 2, . . .} with probability mass function given by P(N = n) = p(n), n = 1, 2, . . . 
. Let Y be given by (20) . Then the p.d.f. is derived as follows: Since 
                                            P(Y ≤ y|N =  n) =  Fn (y) , we see that 

𝑔(𝑦|𝑁 = 𝑛) =  𝑛𝐹𝑛−1(𝑦)𝑓(𝑦) 
 
Consequently, the marginal pdf of Y is: 

𝑔(𝑦) =  �𝑔(𝑦|𝑁 = 𝑛)𝑝(𝑛)
∞

𝑛=1

                                                             (21) 
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= 𝑓(𝑦) �𝑛𝐹𝑛−1(𝑦)𝑝(𝑛)                                                                    (22)
∞

𝑛=1

 

 
We make use of (22) under two conditions: When we know nothing about 

the distribution of the iterates 𝑥𝑛 corresponding to the assumption of a uniform 
distribution on [0,1] and a geometric distribution on the random number N of 
random variables 𝑋𝑖 . The random variable N corresponds to the “waiting time” until 
a periodic point of the logistic map is observed. The second condition assumes that 
the random variables 𝑋𝑖 obeys the beta distribution 𝑥𝑛𝑑~   4

𝜃
𝐵𝑒𝑡𝑎 �1

2
, 1
2
�. We state 

without proof a Theorem due to Hao and Godbole (2014): 
 
Theorem 3 (Hao and Godbole). Let 𝑋 ~ 𝑈(0,1)𝑎𝑛𝑑 𝑁 ~𝐺𝑒𝑜(𝜌).𝐿𝑒𝑡 𝑌 =

max{𝑋𝑖}. Then,  
𝑔(𝑌) =  

𝜌
[1 − (1− 𝜌)𝑦]2

 

 
The probability of success 𝜌 is proportional to the length of the interval 
[𝜃

2(4−𝜃)
16

 , 𝜃
4

 ],  hence, in the case of the logistic map 
 
                                                                 𝜌 =  𝜃(𝜃−2)2

16
  for 𝜃 > 2. 

 
Corollary 2. The random variable Y has mean and variance given, 

respectively, by 
 

𝐸(𝑌) =  
𝜌(ln𝜌 + 1

𝜌 − 1)

(1− 𝜌)2
 

 

𝑉(𝑌) =
𝜌3 −  2𝜌2 − 𝜌2 𝑙𝑛2(𝜌) +  𝜌

(1 − 𝜌)4
 

 
 Proof. Evaluate the integrals: 
                                        𝐸(𝑌) =  ∫ 𝑦𝑔(𝑦)𝑑𝑦1

0  and    
𝐸(𝑌2) =  ∫ 𝑦2𝑔(𝑦)𝑑𝑦1

0        
 
                                                        𝑉(𝑌) =  𝐸(𝑌2) −  𝐸(𝑌)2 
 to obtain the results.∎ 
  
 We now consider the second stochastic formulation where the inputs are 
random variables from a beta distribution. 
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  Theorem 4. (Hao and Godbole, 2014) 
 

Suppose 𝑋~𝐵 �1
2

 , 1
2
 �  𝑎𝑛𝑑  𝑁 ~𝐺𝑒𝑜(𝜌) 𝐿𝑒𝑡 𝑌 = max{𝑋𝑖}. 

Then,  
 

                                         𝑔(𝑌) =  𝜌𝜋−1[𝑦(1−𝑦)]−1/2

[1−(1−𝜌)2𝜋 𝑎𝑟𝑐𝑠𝑖𝑛�𝑦 ]
2                               (23) 

 
Proof. Substitute the appropriate probability distributions in (22) and 

perform the algebra.∎ 
 
The mean and variance of (23), however, will be verified by simulation. 
 
4.0 Simulation 

 
We set up the simulation experiments as follows: Choose the parameter 𝜃 to 

represent the following situations: (a.) start of period doubling bifurcation 𝜃 = 3; 
(2.) start of period 4 orbits  𝜃 = 3.5; (3.)onset of chaos 𝜃 = 3.6; and (4.) chaotic 
regime 𝜃 = 4.  Although the sample size N required for the two models depends on 
𝜌, we selected equi-spaced values starting from 10 until N = 100 with different 
starting values 𝑥0 =  .01, .02, .03, … , .99.  One hundred simulation runs were 
performed for each sample size. The mean and standard deviation of the maximum 
order statistics were then tabulated. 
 
Case 1: Inputs: Uniform [𝜃

2(4−𝜃)
16

, 𝜃
4

 ] or 𝑋~𝑈(0,1)𝑎𝑛𝑑 𝐺𝑒𝑜(𝜃
4
−  𝜃

2(4−𝜃)
16

) 
Table 1. Mean and Standard Deviation of the Maximum Order Statistics for 
Various N 
 
𝜃 = 3 
𝑚𝑖𝑛 = .5625 
𝑚𝑎𝑥 = .75 

𝜃 = 3.5 
𝑚𝑖𝑛 = .3828125 
𝑚𝑎𝑥 = .875 

𝜃 = 3.6 
𝑚𝑖𝑛 = .324 
𝑚𝑎𝑥 = .9 

𝜃 = 4 
𝑚𝑖𝑛 = 0 
𝑚𝑎𝑥 = 1 

n Mean SD n Mean SD n Mean SD n Mean SD 
10 .73444 .01510 10 .83482 .03413 10 .84461 .05400 10 .90956 .07190 

20 .74111 .00870 20 .85058 .02260 20 .87561 .02450 20 .94225 .05861 

30 .74423 .00479 30 .86003 .01366 30 .88337 .01519 30 .96809 .02789 

40 .74439 .00568 40 .86208 .01298 40 .88754 .01269 40 .97451 .02375 

50 .74549 .00418 50 .86538 .01071 50 .88971 .01062 50 .98204 .01585 

60 .74748 .00249 60 .86632 .00861 60 .88983 .00926 60 .98531 .01475 

70 .74744 .00233 70 .86875 .00554 70 .89257 .00780 70 .98630 .01290 

80 .74760 .00228 80 .86957 .00581 80 .89318 .00673 80 .98741 .01348 

90 .74794 .00177 90 .86987 .00485 90 .89377 .00685 90 .99114 .00905 

100 .74818 .00149 100 .86931 .00631 100 .89441 .00554 100 .99003 .01017 
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For parameter values prior to the onset of chaos, the standard deviation of 
the maximum order statistics decreases at a rate of 𝑛−𝛼 where 1 <  𝛼  ≤  1.5 while 
under a chaotic regime, the standard deviation decreases proportional to 1

𝑛
. 

 
Table 2. Mean, Standard Deviation and Squared Bias of the Estimator of the Biotic 
Potential 
 
𝜃 = 3 
𝑚𝑖𝑛 = .5625 
𝑚𝑎𝑥 = .75 

𝜃 = 3.5 
𝑚𝑖𝑛 = .3828125 
𝑚𝑎𝑥 = .875 

𝜃 = 3.6 
𝑚𝑖𝑛 = .324 
𝑚𝑎𝑥 = .9 

𝜃 = 4 
𝑚𝑖𝑛 = 0 
𝑚𝑎𝑥 = 1 

n Sq. Bias 𝜃 n Sq. Bias 𝜃 n Sq. Bias 𝜃 n Sq. Bias 𝜃 
10 0.0038738 2.93776 10 0.0258309 3.33928 10 0.0490888 3.37844 10 0.130870 3.63824 

20 0.0012645 2.96444 20 0.0095414 3.40232 20 0.0095180 3.50244 20 0.053361 3.76900 

30 0.0005327 2.97692 30 0.0035856 3.44012 30 0.0044249 3.53348 30 0.016292 3.87236 

40 0.0005036 2.97756 40 0.0026708 3.44832 40 0.0024840 3.55016 40 0.010396 3.89804 

50 0.0003254 2.98196 50 0.0014807 3.46152 50 0.0016941 3.55884 50 0.005161 3.92816 

60 0.0001016 2.98992 60 0.0012055 3.46528 60 0.0016549 3.55932 60 0.003453 3.94124 

70 0.0001049 2.98976 70 0.0006250 3.47500 70 0.0008833 3.57028 70 0.003003 3.94520 

80 0.0000922 2.99040 80 0.0004718 3.47828 80 0.0007442 3.57272 80 0.002536 3.94964 

90 0.0000679 2.99176 90 0.0004211 3.47948 90 0.0006210 3.57508 90 0.001256 3.96456 

100 0.0000530 2.99272 100 0.0005180 3.47724 100 0.0005000 3.57764 100 0.001590 3.96012 

 
𝜃 = 3 
𝑚𝑖𝑛 = .5625 
𝑚𝑎𝑥 = .75 

𝜃 = 3.5 
𝑚𝑖𝑛 = .3828125 
𝑚𝑎𝑥 = .875 

𝜃 = 3.6 
𝑚𝑖𝑛 = .324 
𝑚𝑎𝑥 = .9 

𝜃 = 4 
𝑚𝑖𝑛 = .5625 
𝑚𝑎𝑥 = .75 

n Mean SD n Mean SD n Mean SD n Mean SD 
10 .74413 .00955 10 .85052 .04765 10 .88020 .03745 10 .96212 .06351 

20 .74827 .00271 20 .87237 .00402 20 .89649 .00486 20 .99174 .01684 

30 .74905 .00177 30 .87272 .00334 30 .89737 .00385 30 .99540 .00917 

40 .74963 .000597 40 .87378 .00238 40 .89848 .00302 40 .99787 .00388 

50 .74950 .00105 50 .87417 .00152 50 .89884 .00168 50 .99810 .00329 

60 .74976 .000468 60 .87437 .00116 60 .89926 .00165 60 .99905 .00192 

70 .74984 .000249 70 .87453 .000729 70 .89956 .000887 70 .99914 .00165 

80 .74986 .000259 80 .87463 .000712 80 .89965 .000771 80 .99940 .00135 

90 .74987 .000288 90 .87476 .000450 90 .89962 .000734 90 .99956 .000856 

100 .74991 .000196 100 .87477 .000580 100 .89972 .000590 100 .99943 .000937 
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