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LATENT VALUE ESTIMATION IN 
CONTINGENT VALUATION

Abstract
 This paper explores the concept of a latent value of a commodity 
not normally traded in the market in the context of contingent valuation. 
The seller’s willingness to accept compensation (WTA) is assumed to be a 
linear mix of unknown independent signals consisting of the latent value 
(P) of the commodity and an adjustment factor (F). Similarly, the buyer’s 
willingness to pay (WTP) is assumed to be an independent mix of these two 
unobservable signals. The concepts of “willing to pay” (WTP) and “will-
ing to accept” (WTA) are often used to value individuals’ preferences and 
select regarding gains and losses. Valuing goods and services not normally 
traded in the market. The ICA platform as a means to estimate the latent 
price P in contingent valuation. The two unknown independent signals are 
estimated by Independent Component Analysis (ICA) and by Factor Analy-
sis methods. Knowledge of the latent value and adjustment factor aids in the 
negotiation process in contingent valuation in environmental economics.

Keywords: contingent valuation, willingness to pay, willingness to accept 
compensation, latent value, factor analysis, independent component analysis

1.0 Introduction

   Popular methods of valu-
ing publicly provided goods and 
services require linkages to ac-
tual market transactions (Bishop 
(1990)). Goods and services not 
normally traded in the market were 
priced using contingent valuation 
methods. In this method, a seller 
sets a price for the good or service 
called his “willingness-to-accept” 
(WTA) compensation while a po-
tential buyer declares his “willing-

ness-to-pay” (WTP) for the good 
or service and a transaction occurs 
when WTA=WTP. Unlike classical 
pricing models in economics where 
prices are set based on production 
costs and profit, in contingent valu-
ation, the goods or services are not 
“produced” in a strict sense, but are 
rather provided by nature, to both 
WTA and WTP reflect the personal 
appreciation of the seller and buyer 
of the value of the good or service. 
This is a popular problem of econ-
omists, on how to account for the 
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non-produced goods and services by 
human effort. This paper explores 
and proposes an economic value for 
those goods and services that are 
not normally traded in the market. 
Although WTA and WTP are per-
sonal preferences of the economic 
players, there is a latent or inherent 
price reference that both players, 
consciously or unconsciously, refer 
to.

The concept of a latent or inherent 
value is pervasive in Statistics. La-
tent canonical correlation (Johnson 
and Wichern,2007), factor analy-
sis (Anderson, (1988)), principal 
components analysis (Okamoto et 
al.,2012). Despite of the researches 
conducted, all speak of hidden val-
ues which are uncovered by special-
ized statistical methodologies. All 
latent variables techniques begin 
from the assumption that each ob-
served random observation carries 
information about the “true value” 
of the variable plus noise. In inde-
pendent component analysis (ICA), 
the observed value is assumed to 
carry information about indepen-
dent signals which are linearly 
mixed (Comon, 1994). Hyvarinen 
(1997) sets the ICA model as:

 1.1  X=As

where X=(x_1,x_2,…,x_n )T, A=(a_
ij) is an mxn matrix of constants and 
S= (s_1,s_2,…,s_n )T are indepen-

dent (unknown) signals. An esti-
mate of the matrix A is obtained by 
maximizing the independence of the 
signals S and S is recovered from:

 1.2 S=A-1 x=Wx.

We make use of the ICA platform as 
a means to estimate the latent price 
P in contingent valuation.

2.0 Basic Concepts

 We begin by defining the 
balanced ICA model:

Definition 1. Let X=(x_1,x_2,…,x-
_n )T be an n-dimensional observed 
random vector, let A=α_ij be an n 
x n matrix of constant, S=(s1 ,s2 
,…,sn ) be mutually independent 
non-Gaussian signals which are not 
observed. Then, the balanced ICA 
model is defined as:

  X=AS.

Using the independence of the un-
observed signals, we wish to derive 
an estimate of A. When the signals 
(s1 ,s2 ,…,sn ) are in fact Gaussian, 
then zero correlation implies inde-
pendence and conversely. However, 
when they are not Gaussian, zero 
correlation need not imply indepen-
dence. We survey some of the alter-
native approaches in the latter case.
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 Maximum-Likelihood Method. Maximum likelihood estimators 
of parameters in statistical models are of interest because MLE’s are as-
ymptotically unbiased, efficient and the variance of the asymptotic distri-
butions achieve the Cramer-Rao lower bound (Lehmann, 1984). Suppose 
that the probability density function of  s_i,i=1,2,…,n is known of q(si ),  
then the joint pdf of  (s1 ,s2 ,…,sn ) can be written as:

 
We seek the distribution of X=AS. This can be obtained by the usual trans-
formation of variables technique:

Let W=A-1, then  the log-likelihood function can be written as:

 
We now want to find the matrix W that maximizes (2.3). If the pdf q(.) is 
of the form: q(Si )=e-h(s_i), then (2.3) simplifies to:

 
 The technique of maximum likelihood estimation requires knowl-
edge of the pdf q(Si). In most cases, q(Si) is unknown and h(Si) ≠ - log q(Si 
). (Phan and Darrat (1992)) showed that for certain classes of function h(Si 
) ≠ - log q(Si ), the estimators (called quasi-likelihood estimators) remain 
asymptotically efficient.

 When T samples of X are observable, the objective function (2.4) 
becomes:

 Information-Theoretic Method. Alternative estimation proce-
dures are suggested in the literature (Hyvarinen (1997), Cardoso (1992), 
OJA and Hyvarinen (1996)) which utilize an information-theoretic ap-
proach instead of the maximum-likelihood approach.

 Definition 2. The differential entropy or random vector Y with den-
sity f(.) is given by:
   H(Y)=H(Ygauss )-H(Y).
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 The negative normalized entropy or negentropy is:

   J(Y)=H(Ygauss )-H(Y).

The negentropy of Y is a non-negative value and is zero if and only if Y 
has a Gaussian distribution. Maximizing J(Y) is, therefore, the same as 
maximizing the non-Gaussianity of the components of Y.

 Using the concept of differential entropy, we define the mutual in-
formation I between n scalar random variables y1 ,y2,…,yn:

 Definition 3. The mutual information I(y1,…,yn) of the scalar ran-
dom  variables yi,i=1,2,…,n is:

If y1,y2,…,yn are independent, then I=0 and conversely. Minimizing I is, 
therefore, equivalent to finding mutually independent component y1,y2,…
,yn.

 In the context of ICA, finding the transformation matrix W that 
minimizes mutual information is equivalent to finding direction in which 
the negentropy is maximized (Novey M.  et al. (2008)). We can express I 
terms of the negentropy of Y as:
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Jones and Sibson (1987) showed that: 

We replace sk(y) and kurt(y) by their sample estimates. Generalizing (2.7) 
by defining contrast function G(.) we  obtain:

  
Where v  is a standardized Gaussian random variable. Some contrast func-
tion suggested include:
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3.0 Methods in Model Formulation

 We assume that there is a commodity C which is not traded in the 
market. In this economic model, there is an “owner” of the commodity C  
and a potential buyer both of whom put a value P to it. The “owner” ex-
presses his price for the commodity in terms of his willingness to accept 
compensation (WTA) given by: 

 3.1 WTA=α11 P+α12 F.

Where F is an adjustment factor independent of P. Once the “Owner” 
expresses his WTA, the buyer puts forth his counter proposal in terms of 
his willingness-to-pay (WTP):

 3.2 WTP=α21 P+α22 F.

In principle, WTA≥WTP and negotiations ensue by the “owner” lowering 
his WTA and the buyer raising his WTP. A transaction occurs when WTA 
= WTP. The components P and F are random quantities depending on the 
buyer-seller pair for the same commodity.
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 3.3 X=AS

where . The only quantity observed in this 
model is the vector X while A and S are unknown. When only the indepen-
dence of the components is assumed, then the ICA approach in Section 2 
can be applied to recover S by estimating W=A-1.

 3.4 S=A-1x=wx

 Factor Model. However, if we relax our restrictions by allowing 
a multivariate normal model for the vector S viz. 

, then (3.3) can be written in the usual 
orthogonal factor model as:

 3.5 X-μx=AS.

Taking the correlation matrices of both sides of (3.5), we obtain

 3.6 corr(X-μ)=A corr(s) AT

          ρ= AAT

The correlation matrix ρ is positive-definite and can be decomposed as:

Where P is an orthogonal matrix and D is a diagonal matrix whose diago-
nal elements are the eigenvalues of P. Let A=PD^□(1/2)   or more explic-
itly:
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The hidden signals can be recovered as:

 3.9 
 

 
Equation (3.9) can be re-expressed in terms of the eigenvalues of ρ:

 4.0  

 

In order to ensure that both P and F lie in the range 0<WTP≤WTA, Equa-
tion (4) can be normalized to yield:

 4.1  

The coefficient found in both equations is ½ regardless of the correlation 
between WTA and WTP. If the covariance matrix ∑ of WTA and WTP is 
used instead of the correlation matrix, the coefficients will change ac-
cording to the values of e1 = (e11,e12) and e2 = (e21,e22) which are the 
eigenvectors corresponding to λ1 and λ2 of ∑ as follows: 
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 Model Explanation.  The latent value P  of the commodity C and 
the adjustment factor F (in this latent value) figure in the expressed WTA 
and WTP of the seller and the buyer respectively. As the seller sets his 
price (WTA) he first determines the value of the commodity to him (say, 
P) and quickly assesses an adjustment factor (F) should the buyer haggle. 
The seller then combines P and F to form his WTA. On the other hand, the 
buyer recognizes this pricing pattern and forms his own combination of P 
and F to express his WTP hoping to match the seller’s WTA. In effect, the 
negotiation reduces to a search of the coefficients  for the 
seller and  for the buyer. These coefficients are, in fact, 
found in the subspace spanned by the orthogonal eigenvectors (e1,e2) of the 
correlation matrix ρ namely

For instance, suppose that at time t=1, the seller sets WTA(1) and the buy-
er gives WTP (1), WTP(1)<WTA(1). At time t =2, the seller adjusts his WTA 
to WTA(2) less than WTA(1) to which the buyer adjusts his WTP to WTP(2) 
greater than WTP(1). These imply that WTA(1)-WTP(1)>WTA(2)-WTP(2), and 
the seller gets an idea about the assumed P of the buyer and vice-versa,  the 
buyer gets an idea about the assumed P of the seller. The process generates 
a monotone decreasing sequence of price differences:

4.0 Numerical Simulations

 We performed simple numerical simulation by generating 100 pairs 
of WTA and WTP with correlation r =0.709 from a bi-variate normal with 
mean equal to 150 for WTA and 80 for WTP and standard deviation of 5 
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for WTA and 1.3 for WTP.

 Table 1 shows the average latent values and adjustment factors ob-
tained using the correlation matrix as inputs:

Table 1: Average Latent Value and Adjustment Factor with Correlation In-
put

Variable           N       Mean     Median     TrMean      StDev    SE Mean
WTA               100    149.80   149.56      149.74        4.87        0.49
WTP               100    79.857    9.936       79.873        1.269      0.127
Value               100    114.83    114.79     114.80         2.92        0.29
Factor              100    34.970    34.895     34.952         2.035      0.203

Eigenanalysis of the Correlation Matrix

Eigenvalue     1.7088    0.2912
Proportion      0.854      0.146
Cumulative    0.854      1.000

Variable         PC1       PC2
WTA            0.707     0.707
WTP            0.707    -0.707

Table 1 shows  result of the descriptive analysis to the  average latent val-
ue and adjustment factor with correlation input. After analyzing the Cor-
relation Matrix, it has been determined that the acceptance level of the 
variance should be at least 80%. The cumulative value obtained is 100%, 
which indicates that the level of variance is accepted. Therefore, the two 
variable will be use to analyze the estimation of the latent value. The size 
of the eigenvalue also determine the number of principal components. Re-
tain the principal components with the largest eigenvalue that is greater 
than 1. The first principal component (PC1) accounts for 85.4% of the 
total variance. The variables that show the highest correlation with the first 
principal component are WTA and WTP, with a correlation coefficient of 
0.707 each. The first principal component is positively correlated with the 
WPA and WTP variables.
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Figure 1: WTA,WTP, Latent Value and Adjustment Factor Obtained from 
Correlation Eigen-analysis

 Figure 1 presents the graph of the numerical simulation result of 
the WTA, WTP, Latent Value, and the Adjustment Factor Obtained from 
the Correlation Eigenanalysis. The estimated true value is 115 with an ad-
justment factor of around 35 given WTA of 150 and WTP of 80.

 Table 2 shows the average latent values and adjustment factor with 
the covariance matrix as input:

Table 2: Average Latent Value and Adjustment Factor with Covariance 
Input

Variable             N       Mean     Median     TrMean      StDev    SE Mean
WTA                100     149.80     149.56     149.74      4.87        0.49
WTP                100     79.857     79.936     79.873      1.269      0.127
Value(co          100     138.56     138.40     138.51      4.23        0.42
Factor(c           100     112.89     112.55     112.85      3.94        0.39

Eigenanalysis of the Covariance Matrix
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Eigenvalue     24.548     0.774
Proportion      0.969       0.031
Cumulative     0.969       1.000

Variable          PC1        PC2
WTA             0.982     -0.188
WTP             0.188      0.982

Table 2 shows  result of the descriptive analysis to the  average latent value 
and adjustment factor with covariance input. Upon analyzing the Correla-
tion Matrix, the two components explain 100% of the total variation in the 
data. Therefore, the two variable will be use to analyze the estimation of 
the latent value. The size of the eigenvalue also determine the number of 
principal components. Retain the principal components with the largest 
eigenvalue that is greater than 1. The first principal component (PC1) ac-
counts for 96.9% of the total variance. The variables that show the highest 
correlation with the first principal component are WTA and WTP, with a 
correlation coefficient of 0.982 each. The first principal component is pos-
itively correlated with the WPA and WTP variables.

Figure 2 shows the graph of these values:
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Figure 2: WTA,WTP, Latent Value and Adjustment Factor Obtained 
from Covariance Eigen-analysis
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 Figure 2 presents the graph 
of the numerical simulation result 
of the WTA, WTP, Latent Value, 
and the Adjustment Factor Obtained 
from the Covariance Eigenanaly-
sis. The estimated true value is 138 
with an adjustment factor of around 
112.89 given WTA of 150 and WTP 
of 80. The concepts of “willing to 
pay” (WTP) and “willing to accept” 
(WTA) are often used to assess indi-
viduals’ preferences and choices re-
garding gains and losses. When an 
estimated values are closer to WTA 
compensation, it indicate that the 
estimates better capture individuals’ 
preferences and valuations in terms 
of what they are willing to accept as 
compensation.

Conclusion

 In economics and decision 
theory, the concepts of “willing to 
pay” (WTP) and “willing to accept” 
(WTA) are often used to value in-
dividuals’ preferences and select 
regarding gains and losses. Valuing 
goods and services not normally 
traded in the market. The ICA plat-
form as a means to estimate the la-
tent price P in contingent valuation. 
The two unknown independent sig-
nals are estimated by Independent 
Component Analysis (ICA) and by 
Factor Analysis methods. Knowl-
edge of the latent value and adjust-
ment factor aids in the negotiation 
process in contingent valuation in 

environmental economics. 
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