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Abstract

The paper provides an approximate analytic solution to the Lotka Volterra
predator-prey differential equations by symbolic regression as suggested by Padua et
al. (2018). The approximate analytic solution can be made as close as desired to the
actual analytic solution involving complicated Lambert W functions as derived by
Evans and Findley (2017). As a side result, the symbolic regression approach also
provides an approximation to the otherwise less tractable Lambert W integral
equation.
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1.0 Introduction

One of the famous differential equations that possess several applications is the Lotka
Volterra (LV) predator prey model given by:

dx1
dt

= αx1 − βx1x2 (1)

dx2
dt

= −γx2 + δx1x2

where x1(t) is the number of preys at time; x2(t) is the number of predator at time (t).
Equation (1) is autonomous in the sense that the right-hand side is not explicitly expressed
in terms of time. Since the publication of Lotka Volterra predator prey model (Volterra,
1926), it has been used to model chemical reactions and phenomena in other fields of the
sciences such as applications in the field of neural networks (Noonburg, 1989), epidemiology
(Roussel, 1997), mode-specific coupling in lasers (Abate, 1968).

Despite the growing number of Lotka Volterra applications, there is no closed form that
analytic solution to this predator-prey model that exists in the literature. The equation
(1) is known to be conservative which implies that the solutions must be periodic but the
analytic forms of the solutions remain unknown. There have been many attempts to derive
the analytic solutions to the LV model. The easiest route to solve equation (1) is to apply
numerical integration. The numerical integration of an equation generates data which can
then be plotted allowing for the visualization of solution curves.

More recently, Padua et al. (2018) attempted to apply symbolic regression to determine
an approximate analytic solution to a first order initial value problem. In Padua et al.
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(2018), finite difference method was applied to ordinary differential equations with initial
values (IV). The recursive relation for {un} generated the pairs {(t0, un), (t1, u1), . . . , (tn, un)}
which satisfy the IVP:

u
′
(t) = f(t, u((t)), u(0) = u0 (2)

un = u(n−1) + f(h, u(n−1))h

where h is the step size. The pairs {(ti, ui)}ni=0 are then used as inputs to a symbolic
regression model which returns {u(t)} in analytic form. This paper obtains approximate
analytic solutions to the Lotka-Volterra equations using the method suggested by Padua et
al. (2018).

2.0 The Lotka-Volterra Model

Lotka-Volterra model in (1) is one of the simplest models of predator-prey interactions.
The model was developed independently by Lotka (1925) and Volterra (1926).

The model contains two variables (x1, x2) and several parameters: intrinsic

x1 = density of prey

x2 = density of predators

α = intrinsic rate of prey population increase

β = predation rate coefficient

δ = reproduction rate of predators per 1 prey eaten

γ = predator mortality rate

Solutions to the Differential Equations

Now, let us derive the solution of the above differential equation. If we let x = x1 and
y = x2, the LV model can be rewritten as:

dx

dt
= αx+ βxy (3)

dy

dt
= −γy + δxy

The equations have periodic solutions and do not have a simple expression in terms of the
usual trigonometric functions. We rewrite the equations as:

dx

dt
= αx+ βxy = x(α + βy) (4)

dy

dt
= −γy + δxy = y(−γ + δx)

From the first equation:

ẋ

x
= α− βy ⇒ βy = α− ẋ

x
(5)
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We subscribe it into the second:

βy = βy(−γ + δx) (6)

d

dt

ẋ

x
+
(
α− ẋ

x

)
(−γ + δx) = 0

xẍ− ẋ2

x2
+
(
α− ẋ

x

)
(−γ + δx) = 0

xẍ− ẋ2 + (αx2 − xẋ)(δx− γ) = 0

Let ẋ = x1, then ẍ = x1
dx1
dt

,

x1xx
′
1 − x21 + (αx2 − xx1)(δx− γ) = 0 (7)

Divide by x2:

x1
x
x′1 −

x21
x2

+ (α− x1
x

)(δx− γ) = 0 (8)

Let x1 = xx2:

x2(x2 + xx
′

2)− x22 + (α− x2)(δx− γ) = 0

xx2
dx2
dx

+ (α− x2)(δx− γ) = 0

x2dx2
α− x2

+
(
δ − γ

x

)
dx = 0

−x2 − α ln |x2 − α|+ δx− γ lnx = C (9)

But x2 = x1
x

= ẋ
x

= α− βγ (x2 ≤ α always) and x20 = α− βγ0

−x20 − α ln |x20 − α|+ δx0 − γ lnx0 = C (10)

−x20 − α ln(βy0) + δx0 − γ lnx0 = C

So,

−x20 − α ln(α− x2) + δx− γ lnx = C (11)

We may solve this equation using Lambert W function:

x2 = α

[
1 +W

(
− 1

α
exp

(
− 1

α

(
α− δx+ γ lnx+ C

))]
. (12)

But q = ẋ
x

and∫
dx/x

1 +W

(
− 1

α
exp

(
− 1

α
(α− δx+ γ lnx+ C)

)) =

∫
α dt (13)
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The Lambert W function, also called the product logarithm, is a set of functions namely
the branches of the inverse relation of the function

f(z) = zez (14)

and z is any complex number. In other words,

z = f−1(zez) = W (zez) (15)

By substituting the above equation in

z′ = zez (16)

we obtain the defining equation:

z′ = W (z′)eW (z′) (17)

for any complex number z′.

Equation (12) has no closed form solution. However, Evans and Findley (2017) recently
suggested a closed form solution to (12) for some specific values of the parameters. A
linearization of the equations yields a solution similar to simple harmonic motion with the
population of predators trailing that of prey by 90◦ in the cycle.

Parametric phase plot solutions

Parametric phase solutions consist of eliminating time from the two differential equations
to produce a single differential equation consisting of prey and predator variables. These are
then considered as orbits in the phase space without the time component. Thus,

dy

dx
= −y

x

δx− γ
βy − α

relating the variables x and y. We note that the solutions to this equation are closed curves
and is solvable by means of separation of variables technique:

βy − α
y

dy +
δx− γ
x

dx = 0

Integrating yields the implicit relationship

V = δx− γ lnx+ βy − α ln y

where V is an invariant and conserved for each curve. Evans and Findley (2017) exploited
this particular property to solve equation (12).

Numerical Finite Difference Method
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Let x1 be the prey density and x2 is the predator density, thus:

dx1
dt

= ax1

(
1− x1

K

)
− βx1x2

1 + βx1
(18)

dx2
dt

= γx2

(
1− x2

kx1
)

where βx1x2 is the interaction rate between the species, βx1x2
1+βx1

is the effective rate of eating
prey, γ is the mortality rate of the predators, where k are the carrying capacitance of each
population.

Example: Wolf ate 100 rabbit out of 100 in 2 days. Then, Let a = 1, γ = 0.5, K = 500,
k = 0.82, β = 1, x1(0) = 100, x2(0) = 100.

The Eulers recursive relation is,

x1i = x1i−1
+ x1i−1

slopei−1∆t

x2i = x2i−1
+ x2i−1

slopei−1∆t

This leads to the recurrence:

x1i = x1i−1
+

(
1x1i−1

(
1−

x1i−1

500

)
−

1x1i−1
x2i−1

1 + 1x1i−1

)
(0.1) (19)

x2i = x2i−1
+

(
0.5x2i−1

(
1−

x2i−1

0.82x1i−1

))
(0.1)

3.0 Application of the Symbolic Regression Approach

5



The values were then entered into symbolic regression software with generated ordered
pairs {(ti, x1i)}ni=0 for prey population and {(ti, x2i)}ni=0 for predator population. Let ti = ih,
i = 0, 1, 2, . . . n, and with step size h. Results of the first little iteration are reproduced in
Table1.

The summary statistics for the symbolic regression analysis with h = 0.1 is found in Table
2. We note the oscillatory characters of the solutions as expected. The prey population
oscillates more often than the predator population. Furthermore, approximation error is
larger for the prey population than for the predator.

Figure 1 shows the graph of the solutions x1(t) and x2(t) when the step size is h = 0.1.

Table 3 shows that summary statistics for the symbolic regression analysis with h = 0.01.
Besides, approximation error is reduced for the prey population than for the predator.

Figure 2 shows the graph of the solutions x1(t) and x2(t) when the step size is reduced to
h = 0.01.
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Table 4 shows that summary statistics for the symbolic regression analysis with h =
0.001. Besides, approximation error is larger for the prey population than for the predator
population.
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Figure 3 shows the graph of the solutions x1(t) and x2(t) when the step size is reduced to
h = 0.001.

Figure 4 shows the plot of x1(t) vs x2(t). Note the closed trajectory as expected.

We also analysed the difference between the number of prey x1(t) and the number of
predator x2(t) at time t. If the difference becomes negative, then the prey population becomes
extinct. However, if the difference stays positive, then the predator-prey populations continue
to oscillate. Table 5 shows the descriptive statistics for this purpose with h = 0.001.

Since the differences lie between -43.11 and 370.12, we conclude that the predator prey
populations continue to oscillate between small and large values.
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Figure 6 shows the evolution of the differences over time.

Main Result: The metric used was the smallest of Mean Absolute Error (MAE) and
highest of R2 Goodness of Fit. The solution for x1 and x2 are shown below:

x1 = 117 + 120 cos(0.295t) + 11.8 cos(0.594t)− 98.9 cos(0.697− 0.259t)

− 91.2 cos(0.295t) cos(0.697− 0.259t)

x2 = 33.7 + 18.3 cos(0.27t) + 44.2 cos(0.776 + 0.276t) + 71.7 cos(0.275t) cos(0.776 + 0.276t)

+ 26.6 cos(0.275t)2 cos(0.776 + 0.276t) + 0.34t cos(0.275t)2 cos(0.776 + 0.276t)

Conclusion

The symbolic regression approach provides a convenient means to determine an
approximate solution to the Lotka-Volterra non-linear differential equations. Moreover, the
approximate solution can be made as close as desired to the actual solution by making finer
subdivisions of the interval of interest. Likewise, since the finite difference approach is a
crude method for arriving at a numerical solution, faster convergence can be expected with
more sophisticated Runge-Kutta numerical methods.
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